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ABSTRACT  

The Multi-Object Broadband Imaging Echellette (MOBIE) is the seeing-limited, visible-wavelength imaging multi-
object spectrograph (MOS) planned for first-light use on the Thirty Meter Telescope (TMT).  The MOBIE project to 
date has been a collaboration lead by UC Observatories (CA), and including the UH Institute for Astronomy (HI), and 
the NAOJ (Tokyo, Japan).  The current MOBIE optical design provides two color channels, spanning the 310–550nm 
and 550-1000nm passbands, and a combination of reflection gratings, prisms, and mirrors to enable direct imaging and 
three spectroscopic modes with resolutions (/∆) of roughly 1000, 3000, and 8000 in both color channels, across a field 
of view that ranges from roughly 8x3 arcmin to 3x3 arcmin, depending on resolution mode.  The conceptual design 
phase for the MOBIE instrument has been underway since 2008 and is expected to end in 2015.  We report here on 
developments since 2010, including assembly of the current project team, instrument and camera optical designs, 
instrument control systems, atmospheric dispersion corrector, slit-mask exchange systems, collimator, dichroic and fold 
optics, dispersing and cross-dispersing optics, refracting cameras, shutters, filter exchange systems, science detector 
systems, and instrument structures.  

Keywords: TMT, MOBIE, WFOS, MOS, spectrograph, (up to 8 keywords allowed) 

1. INTRODUCTION  

The Multi-Object Broadband Imaging Echellette (MOBIE) is the fourth design concept developed to meet the proposed 
science requirements for a wide-field optical spectrograph (WFOS) for TMT.  Due to the nature of seeing-limited 
instruments for extremely large telescopes (i.e. large and expensive), and TMT project funding profiles, the conceptual 
design of the MOBIE instrument has progressed incrementally through a series of design and value engineering stages.  
In general, this staged approach has allowed the MOBIE instrument project to maintain a consistent level of coordination 
with the rest of the TMT project.  The MOBIE project started in 2008 with a six-month feasibility study, and completed 
the second of three anticipated conceptual design stages in October 2013.  The conceptual design phase is now expected 
to complete in late 2015.  The initial (feasibility) optical design for MOBIE was documented previously1, as was the first 
stage of the conceptual design phase2.  An initial stray light analysis for MOBIE on the TMT was also documented 
previously3.  We report here on the results of the second stage of the conceptual design phase, which has included 
assembly of the current project design team, which includes UCO, UH-IfA, and NAOJ.  We report on development of 
the end-to-end optical designs and design of the instrument subsystems, including instrument control systems, the 
atmospheric dispersion corrector (ADC), the slit-mask exchange system, the active collimator mirror, dichroic, folding, 
and corrector optics, grating/prism exchange systems, blue and red channel cameras, mosaic detector systems, and 
instrument structures. 

2. DESIGN REQUIREMENTS 

The MOBIE concept is the fourth is a series of designs that have been proposed for the TMT science requirements (see 
Table 1) for a wide field optical spectrograph (WFOS), following previous concepts proposed by Caltech (MILES), 
UCSC (ELVIS), and HIA (HIA-WFOS).   
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In the MOBIE design, we have attempted to provide flexibility in terms of resolution and multiplexing, and complete 
wavelength coverage at all resolutions, while simultaneously minimizing mechanical complexity.  To accomplish those 
goals, the MOBIE instrument concept makes use of designs that were successfully pioneered on the most recent 
generation of instruments for the 6.5-10m class telescopes.  For example, the baseline collimator design for MOBIE, 
which uses an off-axis conic reflector addressing a rectangular off-axis field, was first developed for the Keck LRIS 
imaging spectrograph, and subsequently used on the Keck DEIMOS and ESI instruments as well.  The multi-object 
echellette (MOE4) spectroscopic mode was first demonstrated on the IMACS imaging spectrograph for the Magellan I 
telescope.  The high efficiency gained by the concept of splitting the instrument optical path into red and blue color 
channels has been used by many other existing spectrographs, including LRIS on Keck, UVES on the VLT, MIKE on 
Magellan, MODS on the LBT, and many others.  Thus, while MOBIE is a new and unique instrument design, not only 
for TMT, but in the world of optical spectrographs, it is also a system composed of many familiar and proven building 
blocks.  

 

Description: TMT Requirement: MOBIE Concept Design: 
Wavelength range: 0.31 – 1.0µm 0.30 – 1.0µm 
Image quality: Imaging ≤ 0.2 arcsec FWHM in each band < 0.2 arcsec FWHM 
Image quality: Spectroscopy ≤ 0.2 arcsec FWHM at any wavelength < 0.2 arcsec FWHM 

Field of View: 40.5 sq. arcmin.  Multiple fields okay. 

8.33’ x 3’ = 25 sq. arcmin, single 
field, direct imaging and low 
resolution modes.  Medium and high 
res. modes use smaller field sizes. 

Slit Length: ≥ 500 arcseconds total 500 arcseconds 
Spatial Sampling: < 0.15” per pixel, goal < 0.1” 0.05” per pixel with 15 micron pixels 

Spectral Resolution: 
R = 500-5000 w/ 0.75” slit,  
R = 150-7500 (goal) 

R = ~1000, ~4000, ~7000 (red) 
R = ~1000, ~5000, ~9000 (blue) 

Throughput: 
≥ 30% from 0.31 – 1.0µm, 
or “similar to best current spectrometers” 

Will depend on cost and availability of 
gratings and optical coatings. 

Sensitivity: 
Shot noise limited for > 60s exposure. 
Background subtraction errors < shot noise 
for 100,000s.  Nod and shuffle desirable. 

Will depend on best available science 
detectors, N&S capable 

Wavelength Stability: Flexure < 0.15 arcsec at detector Closed-loop control of focal planes. 
Table 1 – A compliance matrix showing the TMT science requirements and the MOBIE conceptual design. 

 
The MOBIE project team has developed several key systems engineering documents to guide the design process.  The 
MOBIE Design Requirements Document (DRD), Operational Concepts Definition Document (OCDD), and an Interface 
Control Document (ICD) between the MOBIE instrument and the TMT telescope are all publicly available on the TMT 
website (www.tmt.org/documents), so will not be discussed in detail here.  Table 1 lists the key TMT science 
requirements and the capabilities provided by the latest MOBIE design.   The following sections describe the optical 
design of MOBIE and the subsystems which are required to provide the full range of capabilities and functionality 
enabled by that design.  

3. OPTICAL DESIGNS 

3.1 Optical Design Overview 

The TMT produces an f/15 focal ratio at the Nasmyth focal stations, with a focal surface radius of ~3m, and plate scale 
of 2.18 mm/arcsec. The design and performance considerations motivating the MOBIE optical design were described 
previously1.  The key features of the current MOBIE optical design can be summarized as follows.  The design includes 
a single 8.33 x 3 arcmin field of view (de-scoped from the original 9.6’ x 4.2’), centered 4.8 arcmin off-axis, a large 
(~1m x ~1.7m) reflecting collimator, a dichroic which splits the beam into two colors channels at 550nm, multiple 
spectroscopic and direct imaging modes on both the blue and red sides, and two f/1.9 refracting cameras.  Although 
currently undersized for some operating modes, the blue and red camera designs both produce flat focal surfaces, 
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The MOBIE motion control functions present only a couple of challenges for implementation.  There are linear and 
rotary servomotor stages, air power stages, hexapods, and a slit-mask exchanging robot.  From a software perspective, 
the servomotor and air power stages are quite simple, so a standard HCD can be adapted for each stage.   For the 
conceptual design phase, it’s assumed that a MOBIE HCD will command the focal plane hexapods through a vendor-
supplied application programming interface (API).  Similarly, it’s assumed that the slit-mask exchanger robot will again 
be controlled by a MOBIE HCD through a vendor-supplied API.  The shutters are tightly coupled with the camera 
systems, and are operated directly by the detector controllers.   

All other mechanisms fall into one of three classes: limited linear motion, limited rotary motion, and dual-position.  
From a software standpoint, all three of these controllers are easy to implement, and require nearly identical code. None 
of the software requires high-speed communications or high data rates, so a simple interface to an off-the-shelf motion 
controller is sufficient. The HCDs will simply convert positioning commands into the corresponding motion controller 
commands. 

4.5 Detector Control Systems  

The detector controllers are the most complicated software elements in the system. The detector controllers accept text 
commands over a TCP/IP interface. The detector system HCDs will accept commands from a higher-level assembly, 
convert them into the appropriate low-level controller commands, and send them to the detector controllers (see Figure 
3, right side).  Unlike a motion controller, a single operation will require a sequence of low-level commands to be sent, 
and a separate process will be required to collect and store the data. 

4.6 Flexure Control 

The control of image motion at the blue and red camera focal planes, due to gravitational and/or thermal effects within 
the instrument, will be enabled by multiple MOBIE hardware and software subsystems.  As the first line of attack, the 
MOBIE optical and structural designs seek to balance mass around the instrument rotational axis, and to carry subsystem 
loads in tension/compression elements, such that the primary contribution of gravity-induced flexural image motions will 
be elastic and repeatable (a simple function of instrument rotation angle).  In this case, blue and red channel look-up 
tables based on instrument rotation angle should be able to reduce any flexural image motions by a factor of ~10.  This 
level of flexure control has already been demonstrated in multiple instruments.5,6,7  An active flexure control system then 
only has to correct the residual (non-repeatable) motions, which can be done slowly (over minutes) and should not 
require rapid readout of flexure-sensing detectors. 

To provide the closed-loop control of residual image motions, the motion must be first sensed, then one or more 
corrections calculated, and then corrective actions commanded to the relevant systems.  In the imaging modes, pre-
selected targets will form images on the two flexure control CCDs located adjacent to the science detectors (which are 
read out independently).  In the spectroscopic modes, fixed targets in the telescope focal plane will be created with 
optical fibers and a copper-argon light source.  These targets will form images on the flexure control detectors in the 
camera focal planes.  In the cross-dispersed modes, filters will block the flexure-sensing light to avoid contamination of 
the spectra.  This approach has been used successfully in the Keck DEIMOS instrument6.  With regular read-out of the 
flexure-sensing detectors, motion of image centroids will be calculated, and corrective signals sent to the active elements 
(tip/tilt/piston control of the collimator, and 6 degrees of freedom motions of the science focal planes via the hexapods).  
Active tip/tilt/piston of the collimator mirror can only correct image motions that are identical direction and magnitude 
in both color channels.  If these common-path image motions are later shown to be negligible, actuation of the collimator 
will still be useful for thermally-induced collimator defocus, and will greatly reduce the initial alignment requirements 
on the collimator.  Since most thermal and flexural image motions are generally expected to be different in each color 
channel, corrections made with the collimator will primarily stabilize the image motion arising at the slit mask, at the 
collimator itself, and in the intervening support structures.  Non-common path image motions (both translations and 
rotations of the focal plane images) downstream from the collimator will be corrected by motions of the blue and red 
focal mosaic hexapods.  Active flexure control via tip/tilt/piston of collimator mirrors5 and by actuation of focal plane 
mosaics6,7 have been previously demonstrated, and pose no fundamental conceptual challenges for the MOBIE 
instrument hardware, software, or control systems.          
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hard points (not shown) at the end of their range to limit their total travel. The last unconstrained degree of freedom is 
rotation about the optical axis.  This motion will be prevented with a polymer pin keyed into a machined slot in the edge 
of the prism.  The axial preload will provide sufficient axial force to restrain prism rotation during normal operation.  
These constraints will be reviewed in later design phases to assure safety of the prisms under seismic loadings.  

5.3 ADC Structure and Motion Stages  

The MOBIE ADC structure is envisioned as a hexagonal weldment (see Figure 4) made from structural steel tubing.  
This shape matches the position and arrangement of the two THK actuators and the four LM guides required to support 
the prisms.  Because the apexes of the prisms are 180 degrees out of phase, the actuator and slides will also be located 
180 degrees out of phase.  The flat facets of the hexagonal weldment will be covered with panels that are designed to be 
light-tight and air-tight.  The covering panels will be mounted with quick-release fasteners to allow convenient access to 
the prism stages for service.  The inner surfaces of the ADC structure will be coated to minimize scattered light.  The 
ADC will mount to the instrument structure on a bearing with an integrated spur gear to drive the de-rotation of the ADC 
as the MOBIE field rotates differentially with respect to the atmospheric dispersion angle.  A pre-loaded, double-row, 
angular-contact bearing with an inner diameter of 2000mm will be used (similar to the rotator bearing chosen for the 
Keck MOSFIRE spectrograph9).   

This bearing design is significantly more robust design than the instrument rotator bearings used for ESI, which has been 
in use for over 15 years.  The current ADC mass as designed is approximately 50% lighter than MOSFIRE, and will 
therefore have an additional load safety factor of 2 if the same bearing is used.  

The axial location of each prism within the ADC will be controlled by a THK SSR-65 linear actuator, which is 
composed of a ball screw driving a preloaded crossed-roller slide.  These actuators have been used previously in the 
collimator of the ESI5 instrument with excellent results.  The actuators will attach to the base of the prism cells to 
minimize the moment arm between the actuation axis and the CG of the prism and cell.   Each SSR actuator constrains 6 
degrees of freedom of one prism and will be rigidly connected to the cell at the base.  These actuators can be supplied 
with 2 blocks (one driven by the screw and the second free) to double the moment-carrying capacity of the actuator if 
required.  The remaining two radial pad locations will couple to LM slides with a spring connection to ensure that only a 
force constraint occurs at this interface (to prevent over-constraint of the prism cells).  Each actuator will be driven by a 
DC servomotor and gearbox. The positioning requirements for the prisms do not require closed-loop feedback to provide 
acceptable accuracy, however the design will include a secondary load encoder to make the ADC motion stages 
consistent with MOBIE motion stage standards.  Operating the ADC in a dual closed-loop configuration (with the 
second load encoder) would also allow more complete diagnostic and error recovery capability.   

6. SLIT MASK SYSTEMS 

6.1 Mask Exchange Systems 

Conceptual designs for the MOBIE mask exchange systems were described previously2.  Use of a commercial robot for 
optical element exchange has already been successfully demonstrated10.  The key concept for the MOBIE mask 
exchange system is the location of the robot; either on the fixed or rotating part of the instrument structure (see Figure 
5).  The two alternatives have differing impacts on operations, driven by the need (or not) to rotate the instrument to a 
fixed position each time a mask exchange is required, with the corresponding loss (or not) of observing time.  Similarly, 
the two approaches have differing risks in terms of the challenges of operating the robot in a standard configuration, 
mounted to the floor, or a more unusual configuration, where the robot rotates with the instrument and must operate in a 
variety of attitudes with respect to gravity.  In either case, the robot will load a slit mask into a mounting fixture located 
at the telescope focal surface, and will hold the mask in the correct position and shape during use.  A detailed trade-study 
in the next design phase will be needed to identify the best risk/cost/performance configuration for the mask exchange 
system. 
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12.2  Seismic Restraints 

A key design challenge for MOBIE is the TMT requirement to survive 200 and 1000 year return earthquakes with 
minimal damage.  The rolling surfaces of the supported disks are seismically vulnerable due to the high working stress at 
these surfaces in normal operation.  For this reason the support roller flexures are designed to fail in buckling if the 
vertical accelerations exceed safe limits for the disk bearing surfaces.  The seismic restraint system is designed to 
prevent the mainframe from separating with the carriage under >1g seismic accelerations.  The restraint structures will 
be lined with ultra high molecular weight polyethylene or equivalent material to protect the drive surface and to provide 
a high level of damping.  These restraints will attach to the carriage with fasteners via an encapsulated rubber block, with 
mechanical properties that will be tuned to provide sufficient protection to the mainframe.  For added safety the rubber 
block is encapsulated in a steel plate saddle structure to prevent catastrophic failure. 

13. CONCLUSION 

The MOBIE imaging spectrograph project for the Thirty Meter Telescope has made significant progress towards 
completing its conceptual design. For general efficiency and control of risk, the MOBIE conceptual design efforts have 
made use of subsystem designs from existing successful and operational instruments, and references to the heritage 
designs have been provided where appropriate.  In October 2013, the MOBIE project principal investigator (Bernstein) 
and project manager (Bigelow) left the UC Observatories to take positions at the Giant Magellan Telescope project.  The 
MOBIE project continues under the leadership of the lead engineer (Radovan) and the project scientist (C. Steidel), and 
on-going commitments from the UH-IfA (Onaka, Isani, and Yamada) and the NAOJ (Miyazaki and Ozaki).  MOBIE 
will be built by an international consortium of partners including the United States, China, Japan and India. To this end, 
the project is currently engaged in an intensive effort to connect the interests and capabilities of these partners to relevant 
MOBIE instrument subsystems. The team that emerges from this process will carry the MOBIE design forward into the 
final stage of the conceptual design phase in 2015, followed by the start of the preliminary design phase in early 2016. 
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