
PAN Software Design
The diagram below is designed to explain the communications mechanisms used to
coordinate the data processing tasks in the PAN software. A separate mechanism and
diagram is used to send commands down to the DHE to configure it into an
appropriate state. The command communication to the DHE occurs in the panDaemon
command processor. Only one command expStart is sent from the expTrigger process
and is handled differently from all others in the DHE. (See the detailed design
document “MONSOON Image Acquisition System (Pixel Server) - Pixel Acquisition Node
- Software Design Document, ####.9999.#a for a complete explaination of the process
structure.)

PAN Process Design
This document outlines the design for the co-operating processes that make up

the PAN software. There are four modules or primary processes in the system.

Monsoon Flexible PAN design

panCapture

panProcAlg

panSaver

FITS on Disk

Existing External
Control Program

Socket Connection - external system to Linux PAN

Shared Memory- Attribute Table, semaphores,
Image buffers, FITS header record blocks

Raw Data Buffer
Shared Memory

Finished Data Buffer
Shared Memory

Systran Driver
Data put

in Memory
Get Data

from Memory

Put Finished
Data in Memory

Full Raw
Buffer Queue

Get Full
Finished Buffer

Empty Finished
Buffer QueueGet Empty

Finished buffer

Put Empty
Finished Buffer

Put Full
Buffer Id

Get Full
Buffer Id

Empty Raw
Buffer Queue

Get Empty
Buffer Id

Put Empty
Buffer Id

Read Buffer
Request

Full Finished
Buffer Queue

Put Full
Buffer Id

Get Full
Buffer Id

Ready Finished
Buffer Queue

Put Ready
Buffer Id

Get Ready
Buffer Addr

dataCapture

expStart
Signal Read Request

Complete

fSaver

Spawned
Process

Ethernet Data
Output Stream

Monsoon
Supervisory

Layer

Socket Connection to PAN

. . . or . . .

dheWriteVal

dheReadVal

dheCommands

Shared Memory
Accesses

dheControl Routines

panDaemon
(with DCS)

semGive(finbufferAvail)
semGive(sysRdySem)

semTake(sysRdySem)
semGive(expStartSem)

semTake(finDataRdylSem)

semTake(finBufferRdySem)
semTake(rawDataRdySem)
semGive(finDataRdySem)

semTake(expStartSem)
semTake(finBufferAvailSem)
semGive(expTriggerGoSem)
semGive(finBufferRdySem
semGive(rawDataRdySem)

expTrigger

semTake(expTriggerGoSem)

Semaphore
Operations

Process Shared Memory

External
System

Data Store

panDaemon - This module is a single process which initializes shared memory,
semaphores and the systran board driver. It then spawns the other three primary
processes and finally becomes a command processor that listens for input messages
from the keyboard or a socket and executes the commands received. The primary
communications method between this process and the others is the attribute Table in
shared memory, the hiMem structure containing buffer pointers, queues & FITS header
blocks and a number of semaphores which allow control to be passed between the
processes. This process handles the expStart command that starts data flowing
through the system. It must take the sysRdy semaphore before it can initiate an
exposure by giving the expStrt semaphore.

panCapture - This is module consists of a pair of processes. The panDaemon
spawns the initial process which initializes the pointers to shared memory spaces,
acquires access to the required semaphores and does some initialization. It then
spawns the other process and becomes the dataCapture process.

dataCapture - this process sits in a loop waiting to take the expStrt
semaphore. This is given as a result of an expStart command line sent to the
panDaemon command processing loop. It then from the emptyFnshdBuffer queue
with its associated FITS header list and copies the FITS header list from the
current list to the appropriate slot, puts the buffer index on the
readyFnshdBuffer queue.

The process then loops taking a buffer from the emptyRawBuffer queue and
when ready it gives the trigGo semaphore and waits for an appropriate amount
of data to be sent by the DHE to the PAN. When the data has arrived the index
of the raw data is put on the fullRawBuffer queue and the rDataReady
semaphore is given. After which the process returns to the head of the loop

expTrigger - this process sits in a loop waiting to take the trigGo semaphore
given by dataCapture. when it gets the semaphore it waits a short time (50
ms??) for the dataCapture process to finish setting up the data read and then
sends the appropriate signal down to the DHE to begin the data generation.
The captMode flag determines the appropriate signal and can contain three
possible modes, NORMAL indicates a normal image transfer of a number of
pixels equal to numRows*numCols. XMIT indicates a number of pixels generated
by the MDB XMIT FPGA equal to tSize. ACQBD indicates a number of pixels
generated by an Acquisition board FPGA equal to tSize. For an ACQBD image we
always send 2048x2048 pixels.

panProcAlg - This is module consists of a single process which initializes the
pointers to shared memory spaces, acquires access to the required semaphores and
does some initialization. The process then sits in a loop taking a finished data
buffer from the readyFnshdBuffer queue and then entering the processing loop.

In the processing loop the process waits to take the rDataReady semaphore. It
then gets the next buffer from the fullRawBuffer queue and processes the buffer in
accordance with the currently active processing algorithm. When the process if
done with the raw buffer it is placed on the emptyRawBuffer queue for reuse.

When all processing is done for the current image, the processed data buffer is
placed on the fullFnshdBuffer queue and the fDataReady semaphore is given.

panSaver - This is module consists of a single process which initializes the
pointers to shared memory spaces, acquires access to the required semaphores and
does some initialization.

The process then sits in a loop waiting to take the fDataReady semaphore. When
the semaphore is taken the process removes a buffer from the fullFnshdBuffer queue
and spawns an fSaver task. Once the task is spawned the process takes the
bufferAvail semaphore before giving the sysRdy semaphore.

fSaver - these are transient tasks which copy data from the finished data
buffers and the associated FITS header block lists to a fits file on disk or
to the output data stream (100BaseT ethernet). When done these tasks empty
the header lists, put the data and header buffers back on the
emptyFnshdBuffer queue for reuse and then give the bufferAvail semaphore
before deallocating themselves.

PAN Buffer Queues
emptyRawBuffer
emptyFnshdBuffer
readyFnshdBuffer
fullRawBuffer
fullFnshdBuffer

PAN Semaphores

sysRdy
expStrt
trigGo
rDataReady
fDataReady
bufferAvail

Monsoon PAN Semaphores

panProcAlg

panSaver

dataCapture

fSaver
Spawned
Process

panDaemon

expTrigger

semTake(sysRdySem)

semGive(expTriggerGoSem)

1 semGive(finBufferAvailSem)

semGive(expStartSem)

semTake(expStartSem)

semTake(expTriggerGoSem)

semGive(rawDataRdySem)

semGive(fiBufferRdySem)

semTake(fiBufferRdySem)

semTake(rawDataRdySem)

semTake(finBufferAvailSem)

2 semGive(sysRdylSem)

semGive(finDatadySem)

semTake(finDatadySem)

