Intertwined uncertainties in metal-poor massive star populations from $\mathrm{z} \sim 10$ to 0

JWST/JADES confirms: nearly unresolved clump at $z=10.6$; $r \sim 0.016^{\prime \prime}: 20 M_{\odot} / \mathrm{yr}$ in a 64 pc radius (!)

To UV-aficionados: one of the first truly shocking JWST spectra:

Most prominent lines are N IV], N III], and C III]; these nitrogen lines are rarely seen let alone this prominent in spectra of star-forming galaxies or AGN

Photoionization models can reproduce this emission; but only with a very elevated nitrogen abundance

Why is this so surprising?

Massive stars are the primary site of N-production, via the CNO process - this bottlenecks at N , so produces N at the cost of $\mathrm{C}+\mathrm{O}$

Perhaps not entirely unexpected..

Gratton+12, Bastian\&Lardo 18, ...
Globular cluster populations encode enrichment signatures from high-temperature nuclear burning, including the CNO-process (large dex+ N,O anti-correlations)

Intriguingly: looks strikingly similar to abundance trends long discussed in globular clusters and other ancient remnants

Is GN-z11 unique?

Need larger samples of high-SNR, high-resolution JWST spectroscopy in the rest-UV...

RXCJ2248-ID: $z=6.11$ multiply-imaged lensed system (Mainali +17 , Schmidt +17)

Confirmed $34 \AA$ Å CIV emission; and prominent NIV]

Two lensed systems selected on other UV nebular emission (CIV) show strong NIV] (+NIII])

Topping+, Plat+ in-prep

Implies similarly-elevated N / O - emergence of a new pattern in $z>7$ galaxies?
see also Pascale +23 (Sunburst Arc), Marques-Chaves+23, Isobe+23

Potentially directly constraining GC-like SF \& enrichment by massive stars in-situ - a dream! But complicated:

- Unclear AGN contribution - an N-enhanced Broad Line Region?
- Possible (I/S)MBH seeding in a dense star-forming region

- Where is the N actually coming from?
- Supermassive stars? AGBs? Binaries?

Densely clustered star formation - need spatial resolution!

JWST only gets us to of-order 100pc resolution - can do better with lensing, but have to be lucky

Densely clustered star formation - need spatial resolution!

ELTs will resolve everything at $<100 \mathrm{pc}$ scales: gets us stellar populations \& gas at $z>6$ at the resolution typical of nearby ($<100 \mathrm{Mpc}$) blue compact dwarf galaxies

Already revolutionary: resolved optical spectroscopy of nearby blue compact dwarfs has taught us a lot (and rest-UV could tell us even more..)

Similar enhanced N/O in a dense burst?

KCWI, IZw18

VLT/VIMOS, Mrk996
But: at $20 \mathrm{Mpc}, 0.2^{\prime \prime} \sim 20 \mathrm{pc}$
A lot of physics is still hidden in the cores of these star-forming regions

Much of the detailed physics awaits observations pushing to pc-scales

Frontier now: resolved metal-poor massive stars at the edge of the Local Group

Winds, H-ionizing radiation of metal-poor OB stars (Garcia $+14,21$; Telford $+21,23$; Senchyna + in prep, ULLYSES)

Stripped stars \& other products of binary evolution
(Gull+22, Senchyna+ in prep)

HelgI: deep narrowband He II search (Senchyna, Götberg+ in prep)

ELTs + HabWorlds will revolutionize this work; and open the next frontier

The only place we'll resolve stellar clusters at pc-scale (sans lensing, for $\lesssim 30 \mathrm{~m}$ apertures) is at $\lesssim 20 \mathrm{Mpc}$

The only place we'll resolve stellar clusters at pc-scale (sans lensing, for $\lesssim 30 \mathrm{~m}$ apertures) is at $\lesssim 20 \mathrm{Mpc}$

Our best hope for understanding massive stars in detail at the extreme metallicities, ages, SFR densities we're glimpsing at high-z

- Unlensed galaxies at $\mathrm{z}>6$ with the ELT
- Current best for blue compact dwarfs at $\gtrsim 20 \mathrm{Mpc}$

Resolved clusters only possible in the <20 Mpc Universe (and for lucky lensing)

A new frontier for ELTs (-> HabWorlds):

- Ideally want max throughput \& diffraction-limited resolution at $<5000 \AA$ (and UV..); but ELTs will be the pathfinders!
- Resolved (luminous) stars / clusters, ionizing radiation, stellar winds \& feedback, chemical enrichment \& mixing; approaching early-Universe conditions

Summary:

- First spectra of GN-z11 (and some other z>6 galaxies) reveal evidence of a massive star-driven pollution event on an galaxywide scale - a glimpse of a mode of dense clustered star formation evocative of globulars/early MW?
- Our understanding of these objects will be limited by our understanding of massive stars at high SFR densities and extremely low metallicities
- The ELTs will open new windows for detailed physics by both:
- resolving field $\mathrm{z}>6$ galaxies into star-forming regions
- resolving the $<20 \mathrm{Mpc}$ Universe into clusters \& stars - crucial synergies with next-generation space flagships

