

Building a Detailed Picture of Reionization with ELTs: Gaining Rich Insight from UV-bright z>6 Galaxies

Ryan Endsley The University of Texas at Austin McDonald Observatory Postdoctoral Fellow

Image Credit: JADES team

The Epoch of Hydrogen Reionization

The Epoch of Hydrogen Reionization

Key Outstanding Questions on Reionization

- 1. What were the ionizing properties of z>6 galaxies?
- 2. What was the relative role of bright versus faint galaxies?
- 3. How and where did ionized bubbles grow?

A First Look at Ionizing Properties with JWST

- GTO JADES survey provides exceptionally deep $(m_{AB} \sim 30\text{-}31 5\sigma)$ imaging in nine NIRCam bands.
- Enables greatly improved constraints on rest-optical line emission for reionization-era galaxies.
- In turn yields unprecedented insight into ionizing photon production efficiency of early galaxies.

Assembled a very large sample of Lyman-break $z\sim6-9$ galaxies (N=756) spanning a factor of ~200 in UV luminosity.

Now able to explore UV luminosity dependence on ionizing properties for the first time at z>6.

Extremely high equivalent widths indicate that the emergent light is completely dominated by recently-formed O stars.

This galaxy is producing ionizing photons at an incredibly rapid rate due to a rapid upturn in SFR.

- No sign of any significant nebular line emission. Spectrum dominated by A stars formed ~100 Myr ago.
- This galaxy is producing far fewer ionizing photons due to dearth of recently-formed O stars.

Empirical Evidence for Bursty Star Formation

Across the full sample, find $z\sim6-9$ galaxies with a very wide range of inferred star formation histories.

- Extreme line emitters have had very strong upturns in SFR over the past ~3 Myr.
- Subset of weak line emitters have had negligible star formation over the past 5 Myr, but underwent relatively intense star formation ~10-30 Myr ago.

The Nature of UV-bright z>6 Galaxies

Strong statistical evidence that UV-bright z>6 galaxies are frequently in 'burst-mode' of star formation with emergent light completely dominated by hot O stars.

Advancing Reionization Science with ELTs

Strong statistical evidence that UV-bright z>6 galaxies are frequently in 'burst-mode' of star formation with emergent light completely dominated by hot O stars.

UV-bright z>6 galaxies will be fantastic targets to characterize the ionizing spectra of early O stars which powered reionization.

Revealing The Ionizing Spectra of Early Galaxies

ELTs will easily enable very high S/N composite spectra of UV-bright z~6-8 galaxies, building on past work at lower redshifts.

- Probe several nebular emission lines spanning low (~10 eV) to very high (~75 eV) ionization potentials.
- Reveal shape of the ionizing spectra from metal-poor massive stars that are commonly thought to be the agents of reionization.

See also, e.g., Shapley+03, Topping+20

Advancing Reionization Science with ELTs

Strong statistical evidence that UV-bright z>6 galaxies are frequently in 'burst-mode' of star formation with emergent light completely dominated by hot O stars.

- UV-bright z>6 galaxies will be fantastic targets to characterize the ionizing spectra of early O stars which powered reionization.
- Use ELTs to constrain ionizing photon escape and hence role of UV-bright galaxies to reionization.

Use low-ionization UV absorption features to constrain f_{esc} from individual bright z>6 galaxies.

Absorption depth places firm upper limit on escape fraction of hydrogen ionizing photons.

See also, e.g., Reddy+16

Use low-ionization UV absorption features to constrain f_{esc} from individual bright z>6 galaxies.

... or other powerful UV diagnostics of $f_{\rm esc}$ such as Mg II emission.

Use low-ionization UV absorption features to constrain f_{esc} from individual bright z>6 galaxies.

... or other powerful UV diagnostics of $f_{\rm esc}$ such as Mg II emission.

ELTs will enable f_{esc} constraints on individual star-forming regions within UV-bright z>6 galaxies!

Whitler+23

Early JWST observations are showing that the brightest z>6 galaxies are often composed of multiple extremely compact star-forming clumps.

- Half-light radii <~100 pc.
- Stellar masses of $\sim 10^7 10^8 M_{\odot}$ per clump.
- Light-weighted ages <5 Myr.

See also, e.g., Chen+23, Larson+23

See also, e.g., Chen+23, Larson+23

Early JWST observations are showing that the brightest z>6 galaxies are often composed of multiple extremely compact star-forming clumps.

- Half-light radii <~100 pc.
- Stellar masses of $\sim 10^7 10^8 M_{\odot}$ per clump.
- Light-weighted ages <5 Myr.

Near-IR IFUs on ELTs will detect UV continua of individual clumps with $S/N\approx 10$ in one hour^{*}.

Readily deliver spatially-resolved constraints on f_{esc} within individual z>6 galaxies via absorption line analyses.
*Using GMTIFS ETC

Whitler+23

See also, e.g., Chen+23, Larson+23

*Using GMTIFS ETC

Understanding the Growth of Ionized Bubbles

Simulated View of Reionization

Understanding the Growth of Ionized Bubbles

Simulated View of Reionization

Alvarez+2009

Endsley+2022

Hu+2021

Understanding the Growth of Ionized Bubbles

Combine the power of ELTs and JWST to assess the role of UV-bright galaxies in powering the formation of large ionized bubbles.

- Answer how UV-bright galaxies are driving the morphology and residual HI content within ionized bubbles.
- Strong synergy with 21cm and Lyα surveys over the coming decades to build a detailed picture of how reionization happened.

A Bright Future on Understanding Reionization

Programs targeting UV-bright z>6 galaxies with ELTs will deliver revolutionary insight on how galaxies powered reionization, as well as how reionization progressed through ionized bubble growth.

