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The Epoch of Hydrogen Reionization

Universe is
very hot and Galaxies begin forming and
ionized. producing high-energy light.
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Key Outstanding Questions on Reionization

1. What were the 1ionizing properties of z>6 galaxies?
2. What was the relative role of bright versus faint galaxies?

3. How and where did 10onized bubbles grow?
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A First Look at Ionizing Properties with JWST

GTO JADES survey provides exceptionally deep
(mupg ~ 30-31 56) imaging in nine NIRCam bands.

» Enables greatly improved constraints on rest-optical
line emission for reionization-era galaxies.

» In turn yields unprecedented insight into ionizing
photon production efficiency of early galaxies.

Assembled a very large sample of Lyman-break z~6-9
galaxies (N=756) spanning a factor of ~200 in UV
luminosity.

» Now able to explore UV luminosity dependence on
1onizing properties for the first time at z>6.
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Example Constraints from JADES

Very UV-faint Extreme Line Emitter
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Example Constraints from JADES

Very UV-faint Extreme Line Emitter

N T T T I T 1
| [OIII]+HP EW = 30207235 A ]
\ Extremely high equivalent widths indicate that the
261 Myy=-17.7151 - emergent light is completely dominated by recently-formed
| z=5.731308 O stars.

» This galaxy is producing ionizing photons at an
incredibly rapid rate due to a rapid upturn in SFR.
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Example Constraints from JADES

Very UV-faint Extreme Line Emitter
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Example Constraints from JADES

Very UV-faint Weak Line Emitter
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No sign of any significant nebular line emission. Spectrum [OIIJ+HB EW < 300 A
dominated by A stars formed ~100 Myr ago. Myy = —17.5%02
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» This galaxy is producing far fewer ionizing photons due
to dearth of recently-formed O stars.
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Empirical Evidence for Bursty Star Formation

Across the full sample, find z~6-9 galaxies with a
very wide range of inferred star formation histories.

» Extreme line emitters have had very strong
upturns in SFR over the past ~3 Myr.

» Subset of weak line emitters have had negligible
star formation over the past 5 Myr, but underwent
relatively intense star formation ~10-30 Myr ago.

Endsley+23c: arXiv:2306.05295
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The Nature of UV-bright z>6 Galaxies

Strong statistical evidence that UV-bright z>6 galaxies are
frequently 1n ‘burst-mode’ of star formation with emergent light
completely dominated by hot O stars.
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Normalized Probability

Advancing Reionization Science with ELTs

UV-bright

UV-faint Strong statistical evidence that UV-bright z>6 galaxies are

frequently 1n ‘burst-mode’ of star formation with emergent light
completely dominated by hot O stars.

= - » UV-bright z>6 galaxies will be fantastic targets to characterize
T log(SFRs wye / SFRg ) the 1onizing spectra of early O stars which powered reionization.
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Revealing The Ionizing Spectra of Early Galaxies

Steidel+2016  ELTs will easily enable very high
S S/N composite spectra of UV-bright
Composite z~2 galaxy spectrum from Keck |  z~6-8 galaxies, building on past
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See also, e.g., Shapley+03, Topping+20



Normalized Probability

Advancing Reionization Science with ELTs

UV-bright

UV-faint
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Strong statistical evidence that UV-bright z>6 galaxies are
frequently 1n ‘burst-mode’ of star formation with emergent light
completely dominated by hot O stars.

» UV-bright z>6 galaxies will be fantastic targets to characterize
the 1onizing spectra of early O stars which powered reionization.

» Use ELTs to constrain ionizing photon escape and hence role of
UV-bright galaxies to reionization.



f.s. Constraints on UV-bright z>6 Galaxies

Jones+2013

: Si II profile from low-z galaxy i Use low-ionization UV absorption
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Absorption depth places firm
upper limit on escape fraction of
hydrogen ionizing photons.

See also, e.g., Reddy+16



Relative Flux

/... Constraints on UV-bright z>6 Galaxies

Jones+2013
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Use low-10nization UV absorption
features to constrain /.. from
individual bright z>6 galaxies.

..or other powerful UV diagnostics
of /... such as Mg II emission.



Relative Flux

/... Constraints on UV-bright z>6 Galaxies

Jones+2013
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Use low-10nization UV absorption
features to constrain /.. from
individual bright z>6 galaxies.

..or other powerful UV diagnostics
of /... such as Mg II emission.

ELTs will enable f_,. constraints on
individual star-forming regions
within UV-bright z>6 galaxies!



f.s. Constraints on UV-bright z>6 Galaxies

Whitler+23

Early JWST observations are showing that the
brightest z>6 galaxies are often composed of
multiple extremely compact star-forming clumps.

C3  Halt-light radi1 <~100 pc.

* Stellar masses of ~107—108 Mg, per clump.
C1 C2 * Light-weighted ages <5 Myr.

Extremely UV-bright z~9 galaxy

See also, e.g., Chen+23, Larson+23



/... Constraints on UV-bright z>6 Galaxies

Whitler+23

Early JWST observations are showing that the
brightest z>6 galaxies are often composed of
multiple extremely compact star-forming clumps.

C3 * Half-light radu1 <~100 pc.
 Stellar masses of ~107—10% Mg, per clump.
C1 ) o * Light-weighted ages <5 Myr.

Extremely UV-bright z~9 galaxy Near-IR IFUs on ELTs will detect UV continua of
individual clumps with S/N=10 in one hour".

» Readily deliver spatially-resolved constraints
on f... within individual z>6 galaxies via

absorption line analyses.
See also, e.g., Chen+23, Larson+23 *Using GMTIFS ETC




We can finally disentangle the
relative role of bright versus faint
galaxies 1n powering reionization.




Alvarez+2009

Understanding the Growth of Ionized Bubbles

Simulated View of Reionization




Alvarez+2009

Understanding the Growth of Ionized Bubbles

Endsley+2022 Hu+2021

Simulated View of Reionization
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Understanding the Growth of Ionized Bubbles

Qin+2022

Higo < i)
Ttotal < 1

Combine the power of ELTs and JWST to assess
the role of UV-bright galaxies in powering the
formation of large 1onized bubbles.

» Answer how UV-bright galaxies are driving
the morphology and residual HI content within
1onized bubbles.

» Strong synergy with 21cm and Lya surveys
over the coming decades to build a detailed
picture of how reionization happened.




A Bright Future on Understanding Reionization

Programs targeting UV-bright z>6 galaxies with ELTs will deliver
revolutionary insight on how galaxies powered reionization, as well as how
reionization progressed through 1onized bubble growth.
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