# The formation and dark matter content of ultra-diffuse galaxies

Laura V. Sales UC Riverside







van Dokkum et al. 2015





## Formation mechanisms of UDGs?

## Failed <u>MW-like galaxies</u> dwarf halos

## interna

High spin halos Amorisco & Loeb 2016

**Feedback-driven expansion** Di Cintio et al. 2017, Chan et al. 2018

Mergers Wright et al. 2021

external

**Tidal heating (expansion)** Safarzadeh & Scannapieco 2017, Roman & Trujillo 2017

**Ram pressure + quenching** Tremmel et al. 2020

**Tidal disruption in cored halos** Carleton et al. 2019

IX H

**Combination of internal + external** Jiang et al. 2019, Sales et al. 2020



16 5 kpc 14  $\log(M_{\star}/M_{\odot})=8.21$  $og(r_{h\star}/kpc)=0.56$ Distance [Mpc] σ. 6 5 kpc 4  $log(r_{h\star}/kpc)=0.65$ 2 32 34 36 38 28 30 40 Distance [Mpc] Benavides, Sales, et al. 2022

42

44



The TNG50 box offers the unique opportunity to study UDGs in different environments with a uniform resolution and baryonic treatment.





## **UDGs** definition

Most extended 5% at a given stellar mass



Benavides, Sales, et al., 2022

## How do UDGs form?



## UDGs occupy highspin halos in TNG50

## UDGs occupy dwarfmass halos, $M_{200} \sim [10^{10} - 10^{11}]M_{sun}$

Benavides, Sales, et al., 2022



## Metallicity can help unravel the formation mechanism of UDGs



## UDGs in TNG50 formed in high-spin halos have a steeper metallicity profile than UDGs in NIHAO simulations, formed by bursty feedback

Benavides, Sales, et al., in-prep





## What do we know about the dark matter mass of UDGs?





For such faint, gas-poor dwarfs, globular clusters are the best kinematical tracers

The Virgo cluster is an ideal laboratory (distance ~16.5 Mpc)

> We selected from this sample all of those with  $N_{GC} > 10$  to observe with Keck/DEIMOS



### Identifying member GCs in UDGs



Toloba, Sales, et al. 2023





This work Lit. UDGs Virgo dEs  $\stackrel{\frown}{\simeq}$ ETGs LG dSphs  $\triangle$ Galaxy Clusters  $\bigcirc$ 

**Population of UDGs** in overmassive halos

Large variations in the velocity dispersion of **UDGs** 

Toloba, Sales et al. 2023

-5









## Adding GCs to groups and clusters in TNG50



GC catalog is publicly available in the TNG database

 $M_{200} = 1.44e + 13 [M_{\odot}]$ 

400

200

2023



## **Example simulated UDGs + GCs**





### **Could large masses in UDGs be driven by intra-cluster GC contaminants?**



While contamination can exist, not enough to explain the high-frequency of cases in Virgo Stellar kinematics would be good to confirm, but UDGs have very low surf. brigthnesses...



et

Kinematics and DM content in UDGs in the Virgo cluster

## Are some UDGs "massive failures"? If yes --> why aren't they formed in cosmological simulations?



- UDGs form naturally in TNG50, in both: satellite and field components. They preferentially form in dwarf-mass halos with large-spin (Benavides et al. 2023)

- We have performed the most uniform study of UDG kinematics in cluster-environments (Virgo) using Keck/DEIMOS (Toloba et al. 2023)

- UDGs suggest a wide range of inner dark matter content, in a way reminiscent of the "diversity of rotation curves problem", but for early-type galaxies (Toloba et al. 2018; Toloba et al. 2023)

- We have included the modeling of GCs in cosmological hydrodynamical simulations to make one-toone comparisons to observational data (Doppel, et al. 2021, 2023a,b)

- Simulated UDGs in TNG50 seem marginally consistent with the kinematics and inferred DM content of real UDGs, although the most DM-dense observed UDGs do not seem present in the simulated (Doppel et al 2023) sample

### **Summary**



## **UDGs have dwarf-mass halos in TNG50**



**UDGs tend to have biased-high halo mass at a given M**\*

Benavides, Sales, et al., 2022



## UDGs maximize the angular momentum fraction from the dark matter halo at a given disk/galaxy mass fraction

## Within the Mo, Mao & White '98 formalism:

$$j_d = J_d / J_{200}$$

 $m_d = M_d / M_{200}$ 

 $R_d =$  $\lambda r_{200}$  ,  $m_d$  )



Benavides, Sales, et al.2023



Kinematics and DM content in UDGs in the Virgo cluster







## What is the GCs content predicted for UDGs?



#### Simulated UDGs are consistent with observations of UDGs with dwarf-like GC content

DF44 has a "revised" GC content (Saifollahi+2021)

M∗ [M<sub>☉</sub>]

Doppel, Sales et al. 2023



## What is the kinematic of GCs predicted for dwarfs?



Simulated UDGs marginally consistent with observations, but struggle to reproduce high \sigma values

Doppel, Sales et al. 2023

