

## JWST/TMT synergy/complementarity for solar system observations

### ELT Science in Light of JWST

Christophe Dumas Dec. 12, 2023

#### **FMT Confidential**

The Information herein contains Cost Estimates and Business Strategies which are proprietary to the TMT Project and may be used by the recipient only for the purpose of performing a confidential internal review of TMT. Disclosure outside of the TMT Project and its review panel is subject to the prior written approval of the TMT Project Manager.

Information Restricted Per Cover Page



### **JWST Instruments Capabilities**





### Instrument capabilities for solar system

- JWST wavelength coverage,
   sensitivity, and spatial resolution (+ stable PSF), enables breakthrough investigations about:
  - Conditions for life/habitability within solar system
  - Evolution of primitive planetesimals (building blocks of larger bodies)
  - Water and organics transport to inner regions of solar nebulae
- Gases, minerals, ices, have strong absorption features at these wavelengths





## Highlights of early JWST results

### The first ~1.5 years were prolific!

- Many programs already started or completed, and myriad of targets observed: Saturn, Enceladus, Titan, comets, asteroids, KBOs, Centaurs, Mars, Jupiter, Saturn, Neptune, Uranus, etc
- Follow-up of the DART target during impact showed capability for large tracking rates > 360"/hr (=100mas/sec, current limit is set to 75mas/sec).







### Selected results (i)





### Selected results (ii)



dePater et al., JGR, 128, e2023JE007872 (2023)



Harrington Pinto et al., PSJ, 4:208 (2023) Information Restricted Per Cover Page



Villanueva et al., Nature, 7, 1056 (2023)





# JWST < ---- > TMT: complementarity

**Information Restricted Per Cover Page** 



### Instrument Capabilities (first-light + first-decade)

|                                       |                                                                                                 |                 |                                                                                                                          |                    |                                                                                                                                                             | <u> </u> |
|---------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                       | Instrument and<br>Description                                                                   | λ Range<br>(µm) | Spectral Resolution                                                                                                      | Modes              | Field of View                                                                                                                                               |          |
| (Final design)                        | IRIS/Diffraction-Limited<br>NIR Imager and IFS                                                  | 0.84–2.4        | Z, Y, J, H, K, bandpass filters<br>and multiple narrower in band<br>filters. 4,000 and 8,000 (some<br>modes to 10,000)   | NGSAO,<br>LGS MCAO | Imager: 34" x 34" @ 0.004"/pix<br>IFU with two slicing techniques<br>Lenslet: 0.512" x 0.512" @<br>0.004"/spaxel<br>Slicer: 2.25" x 4.4" @<br>0.050"/spaxel |          |
| (Preliminary design)                  | WFOS/Wide Field<br>Optical Spectrometer                                                         | 0.31–1.0        | 1,500 and 3,500 using 0.75"<br>slits. Goal of 5,000 currently<br>achieved and higher R<br>available with narrower slits. | SL*                | 25 (8.3 x 3)-arcmin <sup>2</sup><br>500" total slit length (up to 60<br>targets with 8" slits)<br>Imaging: full field @ 0.05"/pixel                         |          |
| (Con <b>ceptu</b> al d <b>e</b> sign) | MODHIS/Multi-<br>Objective Diffraction-<br>Limited High-<br>Resolution Infrared<br>Spectrograph | 0.95–2.4        | > 100,000 with 30 cm/s (goal<br>10 cm/s) Doppler velocity<br>precision                                                   | NGSAO,<br>LGS MCAO | 4" diameter field of regard<br>(possible that this will be<br>slightly larger)                                                                              |          |
|                                       | <b>PSI</b> /Planetary System<br>Instrument                                                      | 0.6–5.3         | (fiber fed) High resolution<br>R > 100K<br>(IFS) Medium resolution<br>R > 5,000<br>(IFS) Low resolution R > 50           | ExAO               | 2–5.3 μm only:<br>1.2" x1.2" (low resolution)<br>0.15" x 0.15" (medium<br>resolution)                                                                       |          |
|                                       | <b>MICHI</b> /mid-IR Imager,<br>IFU and Spectrometer                                            | 3.4–13.8        | Imager < 100, IFS 600–<br>1,000, Spectrometer 120,000                                                                    | MIRAO              | Imager: 28.1" x 28.1" @<br>0.027.5" mas/pix N band<br>IFU: 0.175" x 0.07" (35<br>mas/spaxel)                                                                |          |
|                                       | HROS/High-Resolution<br>Optical Spectrograph                                                    | 0.31–1          | Single Object: 100,000 &<br>50,000 (fibers)<br>40,000 & 20,000 (slits)<br>Multi-Object: 25,000                           | SL, GLAO           | <ul> <li>&gt; 10" in diameter (single object<br/>mode)</li> <li>10'-20' diameter (multi-object<br/>mode)</li> </ul>                                         |          |
| Information Res                       | IRMOS/IR Multi-Object<br>Spectrograph                                                           | 0.8–2.5         | 2,000–10,000                                                                                                             | MOAO               | > ten 3" IFUs deployable within a 5' diameter field                                                                                                         |          |
|                                       |                                                                                                 |                 |                                                                                                                          |                    |                                                                                                                                                             |          |





### **Science Capabilities**







### TMT Spatial Resolution for Selected Solar System Bodies

| TMT spatial resolution at 1µm and at opposition for selected solar system bodies |          |          |           |                        |                       |                |  |  |  |
|----------------------------------------------------------------------------------|----------|----------|-----------|------------------------|-----------------------|----------------|--|--|--|
| Target                                                                           | Diameter | Distance | Angular   | Nb resolution elements | Spatial               |                |  |  |  |
|                                                                                  | (km)     | (in AU)  | diam. (") | across apparent diam.  | across apparent surf. | resolution (km |  |  |  |
| Ceres                                                                            | 952      | 1.63     | 0.81      | 130                    | 17012                 | 7              |  |  |  |
| Pallas                                                                           | 545      | 1.29     | 0.58      | 94 8920                |                       | 6              |  |  |  |
| lo                                                                               | 3644     | 4.09     | 1.23      | 199 39442              |                       | 18             |  |  |  |
| Europa                                                                           | 3122     | 4.09     | 1.05      | 170 28951              |                       | 18             |  |  |  |
| Titan                                                                            | 5152     | 8.09     | 0.88      | 142 20156              |                       | 36             |  |  |  |
| Triton                                                                           | 2706     | 28.87    | 0.13      | 21 436                 |                       | 130            |  |  |  |
| Chiron                                                                           | 220      | 15.96    | 0.02      | 3                      | 9                     | 72             |  |  |  |
| Pluto                                                                            | 2390     | 34.05    | 0.10      | 16                     | 245                   | 153            |  |  |  |
| Charon                                                                           | 1210     | 34.05    | 0.05      | 8 63                   |                       | 153            |  |  |  |
| Mars                                                                             | 6780     | 0.64     | 14.55     | 2352 5531644           |                       | 3              |  |  |  |
| Jupiter                                                                          | 143000   | 4.09     | 48.23     | 7794 60740203          |                       | 18             |  |  |  |
| Saturn                                                                           | 120500   | 8.09     | 20.55     | 3321 11026150          |                       | 36             |  |  |  |
| Uranus                                                                           | 51120    | 18.24    | 3.86      | 624 389997             |                       | 82             |  |  |  |
| Neptune                                                                          | 49530    | 28.87    | 2.37      | 382                    | 146085                | 130            |  |  |  |



### On Instrument WaveFront Sensor (OIWFS) guide probe acquisitions

Sidereal tracking mode acquiring on different constellations

Non-Sidereal tracking mode for a single target



Information Restricted Per Cover Page



### **TMT: Solar System Applications**



IRIS PSI



### **Studying Active Volcanic Plumes**



IO. IRIS/TMT – N. Rundquist



### TMT prospects vs JWST

- Higher-spatial resolution will enable detailed geological studies of solar system objects, including monitoring of their activities (e.g. Enceladus, Triton, satellites of the giant planets, planetary rings, etc)
- Higher-spectral resolution, combined with high-spatial resolution, will enable measurements of the temperature and distribution of atmospheric trace species on Mars, Venus, gas giants and their moons, tracking spatial and temporal evolution
- Visible spectroscopy will extend studies of small solar system bodies to include spectral slope measurements and effect of space weathering, but also detection of strong spectral lines, like CN in comets, etc.



### Acknowledgments

The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the California Institute of Technology, the University of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of China and their consortium partners, the Department of Science and Technology of India and their supported institutes, and the National Research Council of Canada. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Canadian Universities for Research in Astronomy (ACURA), the Association of Universities for Research in Astronomy (AURA), the U.S. National Science Foundation, the National Institutes of Natural Sciences of Japan, and the Department of Atomic Energy of India.