

Exoplanetary Atmospheres with the ELTs

Mercedes López-Morales

HARVARD & SMITHSONIAN

Image Credit: M. Weiss / CfA

As of Today:

Over 5,500 exoplanets confirmed around other stars About 1605 of them are rocky About 610 are Earth-sized The majority of them a bit too hot.

The Timeline of Exoplanet Detections

Orbital Period (in years)

Graphic credit: Hugh Osborn

Expected 1st Generation ELTs Instrument Capabilities vs JWST*

Expected 1st Generation ELTs Instrument Capabilities vs JWST*

Expected 1st Generation ELTs Instrument Capabilities vs JWST

Contrast to Host Star

<u>Main Take Away 2</u>: For exoplanets, instrumentation on ELTs will also provide imaging contrast 100 mines better than JWST, and image resolution 10+ times larger than JWST.

<u>Approved exoplanet programs on JWST¹</u>: Transiting Planets: 3218.66 hours Direct Imaging Planets: 858.08 hours

Source: TrExoLiSTS:JWST and DIExoLISTS:JWST by N. Nikolov (nnikolov@stsci.edu) ¹ Includes approved ERS, GTO, and Cycle 1 and 2 GO programs. Time includes overheads

- About 120 transiting and 20 directly imaged exoplanets allocated observations between ERS, GTO, and Cycle 1 and 2 GO programs.
- 25% of GO time currently being allocated to exoplanets.

<u>For reference</u>: The atmospheres of about 60 planets had been studied before the launch of JWST, between 2002 and 2021

JWST results from transiting planets so far

JWST results from directly imaged planets so far

Where will JWST exoplanet studies be when the ELTs go online?

Assuming exoplanets continue to receive 25% of the GO time (75% for transits; 25% for directly imaged planets) and 6000h per GO Cycle, **by 2029 JWST will have observed**:

- About 330 transiting planets
- About 60 directly imaged planets

Current open questions that will likely be answered by then:

- Exoplanet atmospheric metallicity distribution (like the Solar System's or not?)
- Is atmospheric C/O a good tracer of planet migration or not?
- Where is the methane?
- Do terrestrial planets around M-dwarfs have atmospheres?

Still open questions: Atmospheric properties of small planets and Isotope ratios

ELTs and Isotope Ratios in Exoplanets

<u>JWST</u>:

- CO isotopologues in transit observation of WASP-39b (Esparza-Borges+2023)
- ¹³C, ¹⁸O, and ¹⁷O in direct imaging observation of VHS-1256b (Gandhi+2023)

Ground-based:

- ¹²C/¹³C constraint in high-resolution emission observations of WASP-77b with IGRINS (Line+2021)
 - ¹²C/¹³C constraint in direct imaging observations of TYC 8998-760-1 b with SINFONI

(Zhang+2021) Why Isotope Ratios?

D/H isotope ratios are informative tracers of planet formation conditions and their evolution history.

We know that Earth was H-rich because of D/H enrichment

Carbon Isotope Ratios as a Potential Biosignature

Photosynthesis

Plants preferentially absorb ¹²C because is lighter, altering the carbon isotopologue ratios, i.e. ¹²C/¹²⁺ⁿC, in the atmosphere.

C isotope ratios are already detectable in giant exoplanets with existing large ground-based telescopes (e.g. Line+2021), and JWST (Esparza-Borges+2023), but we will need ELTs for smaller planets.

Figure Credit: GreenElement.co.uk

D/H ratio detectability for self-luminous gas giants with ELTs

Molliere & Snellen 2019

ELTs and Atmospheres of Small Temperate Planets

ELTs and Atmospheres of Small Temperate Planets

Earth size temperate planets observable at SNR=5 with ANDES/ELT in direct imaging

Rp < 4Re transiting planets observable at SNR=5 with ANDES/ELT

 $1.5 R_{\oplus} < R < 4 R_{\oplus}$

 $R < 1.5 R_{\oplus}$

Palle+2023

Summary

- JWST will have observed over 330 transiting planets and about 60 direct imaging planets when ELTs see first light.
- Current open questions like the What is that gas giant exoplanets metallicity distributions? Is C/O a good planet migration tracer? Where is the methane? and Do terrestrial planets around M-dwarfs have atmospheres? will have been solved.
- But questions such as **atmospheric properties of small planets**, and isotope ratios will still be unanswered.
- The ELTs will provide insights about isotope ratios of Jupiter to super-Earth size planets, detailed atmospheric characterization of planets > 1.5 Re, and a number of hot, earth size planets.
- ELTs will be able to observe the atmospheres of a small mumber of earth analogs. Proxima b is by far the best target.

Backup Slides

Gas Giants

Detection of CO₂, H₂O, CO, SO₂, Na, K in WASP-39b (T_{eq} = 1120K)

Rustamkulov+2023

Sub-Neptunes and Super-Earths

Detection of CO₂, H_2O and CH_4 in WASP-80b (T_{eq} =827K)

Bell+2023

Rocky Planets

D/H vary in the solar system, while ¹²C/¹³C are uniform

... however ¹²C/¹³C might be an indicator of biological processes (e.g Glidden+2022)

CO isotopologue detection with JWST

Esparza-Borges+2023

CO isotopologue detection with JWST

Esparza-Borges+2023

