Welcome! Goals of the meeting

Tommaso Treu (UCLA)

Goals of the meeting

- JWST has been doing science for 1.5 years
- How does what we learned affect the science drivers for ELTs?
- How do we use the lessons learned from JWST to optimize instrumentation and operations for ELTs?
- One example: the high redshift universe

A bit of history: HST ground based synergy

TYPE Ia SUPERNOVA DISCOVERIES AT z > 1 FROM THE *HUBBLE SPACE TELESCOPE*: EVIDENCE FOR PAST DECELERATION AND CONSTRAINTS ON DARK ENERGY EVOLUTION¹

Adam G. Riess,² Louis-Gregory Strolger,² John Tonry,³ Stefano Casertano,² Henry C. Ferguson,² Bahram Mobasher,² Peter Challis,⁴ Alexei V. Filippenko,⁵ Saurabh Jha,⁵ Weidong Li,⁵ Ryan Chornock,⁵ Robert P. Kirshner,⁴ Bruno Leibundgut,⁶ Mark Dickinson,² Mario Livio,² Mauro Giavalisco,² Charles C. Steidel,⁷ Txitxo Benítez,⁸ and Zlatan Tsvetanov⁸

Spectroscopic Data					
SN	UT Date	Instrument	Exposure (s)	z	
2002fw	2002 Sep 31	HST ACS	15000	1.30 ^{a,b}	
2002fx	2003 Sep 14	Keck II NIRSPEC	2000	1.40 ^{c,d}	
2002hp	2002 Nov 7	Keck I LRIS	7800	1.305 ^{c,e}	
	2002 Nov 7	VLT FORS	14000	1.305 ^{c,e}	
2002hr	2002 Nov 8	Keck I LRIS	7800	0.526 ^{b,f}	
2002kc	2003 Jan 7	Keck I LRIS	1500	0.216 ^{b,f}	
2002kd	2003 Jan 1	Magellan LDSS	7200	0.735 ^{b,f}	
2002ki	2003 Jan 7	Keck I LRIS	2700	1.141 ^{b,f}	
2003aj	2003 Oct 1-3	VLT FORS2	16800	1.307 ^{c,g}	
2003ak	2003 Sep 11	Keck II NIRSPEC, VLT FORS2	14000	1.551 ^{c,d}	
2003az	2003 Mar 3	HST ACS	6500	1.27 ^{a,b}	
2003bd	2003 Feb 27/28	Keck I LRIS	16500	0.67 ^{a,b}	
2003be	2003 Feb 28	Keck I LRIS	5400	0.64 ^{b,f}	
2003dv	2003 Apr 16	HST ACS	15000	1.34 ^{b,h}	
2003XX	2003 Apr 16	HSTACS	15000	0.935 ^{c,h}	
2003eb	2003 Apr 16	HST ACS	15000	0.899 ^{b,h}	
2003ea	2003 Jun 2	HST ACS	6000	0.839 ^{a,b}	
2003eq	2003 Jun 2	HSTACS	6000	0.954 ^{b,h}	

Received 2004 January 20; accepted 2004 February 16

Complementarity of JWST and ELTs

• JWST

- Access to full wavelength range (no atmospheric opacity, turbolence)
- Low thermal background (30K) and no sky emission lines

• ELTs

- Higher angular resolution with adaptive optics (factors 3.5-6)
- Larger collecting area (factors 12-36)
- New instruments can be built, answering new scientific questions and taking advantage of new technology
- Lifespan can be extended (Palomar 5m is still in operation, after amost 75 years)

The high redshift universe

First light and reionization

July 14 2022: first data arrive!

Roberts-Borsani et al. 2022; Merlin et al. 2022

July 19 2022: lots of bright galaxies at z>10!

Castellano et al. 2022; see also Naidu et al. 2022, Donnan et al. 2022

July 19 2022: bright galaxies at z>10

We expected 0.1!

Castellano et al. 2022; see also Naidu et al. 2022, Donnan et al. 2022

Galaxies form earlier and faster than we thought!

On the stunning abundance of super-early, massive galaxies revealed by JWST

Andrea Ferrara ,¹ Andrea Pallottini ,¹ and Pratika Dayal ²

¹Scuola Normale Superiore, Piazza dei Cavalieri 7, 50126 Pisa, Italy ²Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen, The Netherlands

The brightest galaxies at Cosmic Dawn

Charlotte A. Mason^{1,2,*}, Michele Trenti^{3,4} and Tommaso Treu⁵ ¹Cosmic Dawn Center (DAWN) ²Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 København N, Denmark ³School of Physics, University of Melbourne, Parkville 3010, VIC, Australia ⁴ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia ⁵ Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USA

What are the implication for the formation of supermassive black holes? Does it mean they have more time as well?

Mason, Trenti & Treu 2022; see also Ferrara et al. 2022

High-z Galaxies are extremely compact out to optical rest frame

Galaxies at z>7 are galaxy scale starbursts Run Run Run as Fast as you Can!

Treu et al. 2023; Yang et al. 2022b

GHZ 1	5200W	1277N	1356W o	IAAAW o
GHZ 2	1200w		T356W0	0 1444W 0
GHZ 3	66.) 1200w	1277W o	1356w o	California de la companya de la comp
GHZ 4	6 1200w	IZTIN	1356W o	Laam o
GHZ 5 ^{1150w}	CT 1200w	12Лин с	1356w o	a de la constante de
GHZ 6	E200W	277W	1356w	1444W

Roberts-Borsani et al. 2023

A sub-L* galaxy at Z=9.79

Summary

- The synergy between HST and 8-10m telescopes from the ground has been tremendously productive in the past 30 years
- JWST discoveries highlight the need for extremely large telescope to complement it and follow it-up
 - Larger collecting area
 - Higher angular resolution (with adaptive optics)
 - ELT can have multiple generations of instruments, taking advantage of technological and scientific developments
 - Background is higher than in space, so in some configurations JWST will remain unsurpassed
- For example: JWST discovered that galaxies form earlier and faster than we
 previously thought. Plenty of galaxies just a few 100Myrs after the Big Bang at
 z>10. These galaxies are extremely compact with typical sizes of order 10-100pc,
 often smaller than a single NIRSpec spaxel. ELTs AO-fed integral field
 spectrographs will be needed to study their internal composition and kinematics.

