
Real-Time Software Programmer Manual

SOAR Adaptive Module (SAM)

Revision 3.11, May 2013

Change Record

Version Date Description Owner Name

3.8 January 25, 2013 Changes introduced by RTSOFT v4.1.0 RCR

3.9 March 14, 2013 Modulate command documented RCR

3.10 March 25, 2013 REC, SETREF documentation RCR

3.11 May 16, 2013 Reference to SDN-8410. How to build and install the
device drivers. How to build and install the Labview
modules shared libraries.

RCR

ii

Índice de contenido
Chapter 1:Overview...1

1.1Introduction..1
1.2Software Architecture...1
1.3Source Code...2
1.4Device Drivers..3

1.4.1 powerdaq..4
1.4.2 pci9054..4
1.4.3 ni660x..4
1.4.4 astropciv1.7..4

Chapter 2:The Real-Time Core..5
2.1Introduction..5
2.2Source Code and Compilation..5
2.3Loading the Module...5

2.3.1 Module Parameters..7
2.4Data Flows to User Space..7

2.4.1 Control and Response FIFO..8
2.4.2 AO Loop Data FIFO..13
2.4.3 TT Loop Data FIFO...14
2.4.4 CTRL_I Shared Memory Buffer...14
2.4.5 CTRL_F Shared Memory Buffer...15
2.4.6 RMAT_X and RMAT_Y...15
2.4.7 BANK_I Shared Memory Buffer..15
2.4.8 DARK_I Shared Memory Buffer..15
2.4.9 MASK_I Shared Memory Buffer..15
2.4.10 GRID_X and GRID_Y Shared Memory Buffers...16
2.4.11 WEIGHT Shared Memory Buffer..16
2.4.12 Device File /dev/soartt...16

2.5DM Control Loop...16
2.5.1 Centroid Algorithms..18

2.5.1.1 Bad Pixels..19
2.5.1.2 Bias Subtraction...19
2.5.1.3 Background Subtraction...19
2.5.1.4 Sub-aperture Flux...19

2.5.2 Digital Controller...19
2.5.3 Voltage Generation..20

2.6SOAR M3 Control Loop..20
2.6.1 Centroid Algorithm..21

2.6.1.1 Bias Subtraction...22
2.6.2 Digital Controller...22
2.6.3 X-Y to M3 Coordinates...22
2.6.4 M3 Command Generation (Only for PDAQ DIO Board)...23
2.6.5 User Defined Waveforms...24

2.7SOAR Mount Control Loop...24
2.7.1 Digital Controller and Low Pass Filter..25

iii

2.7.2 X-Y SAM coordinates to X-Y SOAR TCS coordinates..25
2.8LLT M3 Control Loop..25

2.8.1 Digital Controller...25
2.8.2 X-Y SAM Coordinates to LLT M3 Piezoelectric-Voltages...26
2.8.3 LLT M3 Command Generation...26

2.9LLT M1 Control Loop..26
2.9.1 Digital Controller and Low Pass Filter..26

Chapter 3:The RTSOFT LabVIEW Application..29
3.1Source Code...29

3.1.1 FITS...29
3.1.2 LV2010-RTAI3.8...29
3.1.3 MEMLIB...29
3.1.4 NI660X..29
3.1.5 SDSU-III..29
3.1.6 STFLIB..29
3.1.7 TTCOMMSLIB...30
3.1.8 UNSCRLIB...30

3.2Architecture..30
3.2.1 Consumer Producer Model for Data Acquisition..30
3.2.2 Execution Threads...30

3.3Implementation Reference...32
3.3.1 AO Loop Data Task...32
3.3.2 TT Loop Data Task..32
3.3.3 Frame Data Task..32

3.3.3.1 Reading a Frame..33
3.3.3.2 Quad-Unscrambling...33

3.3.4 WFS User Interface...34
3.3.4.1 Reference Positions..34
3.3.4.2 Adding Static Aberrations to Reference Positions...34
3.3.4.3 Display of Zernike Mode Estimates..35
3.3.4.4 Bias Calibration...35
3.3.4.5 Pockels Cell...35

3.3.5 WFS Display..35
3.3.6 FWHM & Flux Monitor..36

3.3.6.1 Spot Size (FWHM)..36
3.3.6.2 Sub-Aperture Flux...37

3.3.7 AO Loop Control User Interface...37
3.3.7.1 Interaction Matrix..37
3.3.7.2 SVD Reconstructor..37
3.3.7.3 Modal Reconstructor..38
3.3.7.4 Optimal Modal Reconstructor (Deprecated)..38

3.3.8 AO Loop Data Recorder..39
3.3.9 Reconstruction Error Analysis...39
3.3.10 AO Loop Performance...39
3.3.11 Modal Coefficients Charts...40
3.3.12 Noise Propagation..40
3.3.13 DM Voltages User Interface..40

iv

3.3.13.1 ROTFLAT..40
3.3.13.2 Static Aberrations...41
3.3.13.3 Mirror Shape Display...41

3.3.14 TT Loop User Interface...41
3.3.14.1 Bias calibration..41

3.3.15 TT Loop Performance..41
3.3.16 “Wobble” Tool...41
3.3.17 Mount Control Loop Task..42

3.3.17.1 X-Y SAM coordinates to Ra-Dec SOAR TCS coordinates...42
3.3.18 LLT Control Loop Task...42
3.3.19 Command Parser Task...42
3.3.20 Remote Services..45
3.3.21 Simulator Engine...46

v

Chapter 1:Overview

Chapter 1: Overview

1.1 Introduction

The SAM software suite of applications comprises a set of programs that differentiate themselves by
the mission they serve [1]. The suite includes the Instrument Control Software, Imager Software, AO
and LGS Modules Software and Real-Time Software.

This manual covers the implementation details of the Real-Time Software (RTSOFT). The manual is
not focused on operational aspects of the software. For an operational focus please read the Real-Time
Software User Manual instead.

1.2 Software Architecture

The main task of the Real-Time Computer Software (RTSOFT) is to measure atmospheric
distortions and compensate them in real time, understanding real-time as the ability to respond to
external events in a minimum and deterministic amount of time.

The requirements imposed [2] called for a hybrid approach. The hard real-time part of the software,
represented by data acquisition and loop control, was implemented in kernel modules under an RTAI
Linux environment [5]. This set of kernel modules is called the real-time core (RTCORE). The soft and
non real-time part of the software, represented by data storage and data presentation, user interfaces
and remote connectivity, was implemented in LabVIEW [3].

Figure 1.1 presents the architecture of the RTSOFT. Two primary layers can be identified: hardware
and software. Hardware is represented by the several interface boards connecting to actual devices like
DM, M3, WFS, etc. Software on the other hand can again be seen in two secondary layers. User space
and Kernel space.

The RTCORE belongs to the kernel space and the LabVIEW application belongs to the user space.
The two spaces normally don't see each other except through special files or shared memory. The
RTCORE uses both to communicate with the LabVIEW user space application.

The block diagram shows how the RTCORE closes the DM control loop, the M3 control loop and
the LLT control loop. The WFS CCD interface board writes the acquired images to memory an signals
with an interrupts each time it finishes the transfer. The RTCORE is triggered by the interrupt to
execute the control algorithm and actuate the DM.

Depending on the operation mode, LGS or NGS, the tilt error signal is derived from the WFS or the
TT probes to actuate the M3 mirror and the telescope mount. When in LGS mode the residual error
measured by the WFS is used to actuate the LLT.

1 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 1:Overview

1.3 Source Code

The RTSOFT software can be found in the Real-Time Computer machine, installed in the ao user
home directory under root directory RTsoft. The RTCORE related code lives under subdirectory
KModules while the LabVIEW application code lives under subdirectory LV2010Modules with its main
VI living alone in the root directory RTsoft.

Executables and shared libraries produced by the building of the LabVIEW application can be found
under directory Bin and Lib. Configuration files, data files, logs and macros are found in the
ConfigFiles, Data, Logs and Macro subdirectories.

Kernel modules produced by the source code in the Kmodules subdirectory, are installed outside the
RTsoft directory tree in the standard /lib/modules/<kernel version> system directory. The details can be
found in the Makefile for each module.

Copies of the Real-Time Software are kept in the SOAR public file server. Access is possible
through local accounts on machine ctioll. The path to the copies is /home/public/SOAR/SAM.

The following is a tree view of the directory structure of the software:

RTSOFT Programmer Manual Rev 3.11, May 2013 2

Figure 1.1: Block diagram of the Real-Time Computer Software

USER SPACE APPLICATION-SCL Server (TCP/IP)
-Command Parser
-Diagnostic Info
-Cov DM
-Cov Centroids
-Averages

CCD
Interface

User Space

Kernel Space

10Hz

Frame

Frame
AddressCCD

Driver

High Memory

M3
Board

WFS CCD
Board

Hardware

Software

DMA

/dev/astropci /dev/rtf

RTCore
Interface

DM
Interface

Real-Time Core

/dev/ttcomms /dev/rtf

M3
Interface

TTP
Interface

LLT
Tilt 1Hz

Slopes Command
Matrix

DM
Driver

1000Hz

M3
Tilt

TTP
Driver

DM
Board

M3
Driver

/dev/rtf

Mount/LLT
Interface

TT Probes
Board

/dev/rtf

100Hz

INT 234Hz

LGS

LGS

NGS

Mount
Tilt

1Hz

Chapter 1:Overview

RTsoft
|--Bin
|--Boot
|--ConfigFiles
|--Data
|--Doc
|--KModules
| |--astropciV1.7
| |--djbfft0.76
| |--ni660x
| |--pci9054
| |--powerdaq
| `--rtcore
|--Lib
|--Logs
|--LV2010Modules
| |-- ASTROLIB
| |-- CAMERALIB
| |-- COMMLIB
| |-- DISPLIB
| |-- DMLIB
| |-- DTLIB
| |-- DYNVILIB
| |-- FAULTLIB
| |-- FITS
| |-- HISTORYLIB
| |-- INIFLIB
| |-- LMLIB
| |-- LV2010-RTAI3.8
| |-- MEMLIB
| |-- MULTIFLIB
| |-- NI660X
| |-- PARSELIB
| |-- RTCORELIB
| |-- RTSOFTLIB
| |-- SCLN
| |-- SDSU-III
| |-- STFLIB
| |-- TCSLIB
| |-- TTCOMMSLIB
| `-- UNSCRLIB
|--Macro
`--Profiles
 |-- B1x1
 `-- B2x2

1.4 Device Drivers

The device drivers modules for each board are packed under the Kmodules subdirectory. In general
these are non standard versions of the device drivers tailored to work under the RTAI environment.

3 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 1:Overview

1.4.1 powerdaq

Use the 3.6.23 version of the powerdaq driver:

cd powerdaq/3.6.23
make
make install

Edit rc.local and add the following lines to load the driver at boot time:

Load the Power-DAQ driver: SAM DM Voltages
/sbin/modprobe pwrdaq rqstirq=0

1.4.2 pci9054

Use the 2.6-adeos version of the pci9054 driver:

cd pci9054/2.6-adeos
make
make install

Edit rc.local and add the following lines to load the driver at boot time:

Load the PCI9054 driver: SOAR M3 Mirror
/sbin/modprobe ttcomms

1.4.3 ni660x

Use the 2.6-adeos version of the ni660x driver:

cd ni660x/2.6-adeos
make
make install

Edit rc.local and add the following lines to load the driver at boot time. Place it after loading the
RTAI modules.

Load the NI660x driver: SAM Pockels Cell & APD Counters
/home/ao/RTsoft/KModules/ni660x/2.6-adeos/ni660x_load

1.4.4 astropciv1.7

Use the 2.6-adeos version of the astropciv1.7 driver:

cd astropciv1.7/2.6-adeos
make
make install

Edit rc.local and add the following lines to load the driver at boot time. Place it after loading the
RTAI modules.

Load the SDSU-III driver: SAM WFS
/home/ao/RTsoft/KModules/astropciV1.7/2.6-adeos/astropci_load

RTSOFT Programmer Manual Rev 3.11, May 2013 4

Chapter 2:The Real-Time Core

Chapter 2: The Real-Time Core

2.1 Introduction

The real-time core (RTCORE) is implemented as a single kernel module with upward and
downward dependencies with other device driver modules (Figure 1.1). The RTCORE and the device
drivers source code, are all kept together under directory Kmodules (see section 1.3). Requirements and
design notes on the RTCORE software can be found in document [4].

The module implements basically two tasks: a bottom-half interrupt handler, driven by the interrupt
handler of the camera controller driver, and a periodic task hooked to the computer timer. The bottom-
half interrupt handler handles the AO loop, while the periodic task handles the TT loop. To serve the
run-time configuration of the module, several data paths suitable of being accessed by a user space
application, are readily available.

2.2 Source Code and Compilation

The source code of the RTCORE module is located under directory Kmodules/rtcore/2.6-adeos
(section 1.3). The real-time computer has RTAI installed in it. At the time this document was written
the Linux kernel version in use was 2.6.25 patched with RTAI 3.8 under CentOS 5.81.

There are conditional compilation directives that can come up handy when doing tests or trouble
shooting. These directives are basically part of the .c files. Edit the file and uncomment the “#define
DEBUG_SOARAO” directive to compile with debug messages enabled. Debug messages will be
written to the kernel log, and with proper configuration of the kernel log daemon, they can be read from
the /var/log/messages file.

The other handy preprocessor directive removes the dependency of the RTCORE to the driver
modules routines. Edit the file and comment out the line “#define _USE_<driver name>” to remove all
references to routines in the driver module.

To compile the module become superuser and type make. Then do a make install to install the
module

make
make install

This will produce the kernel module rtcore.ko. When installed, the module rtcore.ko is copied to the
/lib/modules/2.6.25/kernel/drivers/misc directory.

2.3 Loading the Module

The SAM Real-Time Computer (RTC) automatically loads the RTCORE module on boot time. The
rc.local file was modified to accommodate the lines that load the RTAI base modules, device drivers

1 See document [5] for tips on how to set up an RTAI enabled environment.

5 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

and RTCORE in the right order preventing breaks in dependencies. An example of this file follows

#!/bin/sh
#
This script will be executed *after* all the other init scripts.
You can put your own initialization stuff in here if you don't
want to do the full Sys V style init stuff.

touch /var/lock/subsys/local

Load the PowerDAQ drivers: SAM DM Voltages
/sbin/modprobe pwrdaq rqstirq=0

Load the PCI9054 driver: SOAR M3 Mirror
/sbin/modprobe ttcomms

Loat the RTAI-3.8 base: Real-Time Kernel
/sbin/insmod /usr/realtime/modules/rtai_smi.ko
/sbin/insmod /usr/realtime/modules/rtai_hal.ko
/sbin/insmod /usr/realtime/modules/rtai_ksched.ko
/sbin/insmod /usr/realtime/modules/rtai_sem.ko
/sbin/insmod /usr/realtime/modules/rtai_fifos.ko
/sbin/insmod /usr/realtime/modules/rtai_shm.ko
/sbin/insmod /usr/realtime/modules/rtai_math.ko

Load the NI660x driver: SAM Pockels Cell & APD Counters
/home/ao/RTsoft/KModules/ni660x/2.6-adeos/ni660x_load

Load the SDSUIII driver: SAM WFS
/home/ao/RTsoft/KModules/astropciV1.7/2.6-adeos/astropci_load

Load the RTCORE module
/home/ao/RTsoft/KModules/rtcore/2.6-adeos/rtcore_load

To check that the RTCORE module was properly installed use the “lsmod” command. The output
should look as follows:

% /sbin/lsmod
Module Size Used by Tainted: P
input 4928 0 (autoclean)
astropci 11844 0
rtcore 99776 0 [astropci]
ni660x 5664 0 [ao_rtcore]
rtai_shm 6832 0 [ao_rtcore]
rtai_fifos 29868 0 [ao_rtcore]
rtai_up 62940 0 [ao_rtcore rtai_shm rtai_fifos]
rtai_hal 15924 0 [input astropci ao_rtcore ni660x rtai_shm
pwrdaq 940224 0 [ao_rtcore]
lp 7652 0 (autoclean)
parport 30464 0 (autoclean) [lp]
iptable_filter 2404 0 (autoclean) (unused)
ip_tables 13528 1 [iptable_filter]
e100 52504 1

RTSOFT Programmer Manual Rev 3.11, May 2013 6

Chapter 2:The Real-Time Core

ext3 63812 3
jbd 44168 3 [ext3]

To manually install and remove the module use the following script under super-user mode from a
console window. To install the module:

/home/ao/RTsoft/KModules/rtcore/2.6-adeos/rtcore_load

To remove the module:

/home/ao/RTsoft/KModules/rtcore/2.6-adeos/rtcore_unload

2.3.1 Module Parameters

The module is capable of accepting parameters at load time to configure interface board ID
numbers. The source code includes the following parameter definitions (osLx24.c):

MODULE_PARM(dmb,”2i”)
MODULE_PARM(ttb,”i”)

The dmb parameter accepts two integer values specifying the board ID for the two DIO boards that
generate the DM voltages. The ttb parameter is a single integer value specifying the board ID for the
DIO board the generates the M3 set-point commands2.

For example, the following line will load the module and assign the ID number 0 and 1 to the DM
DIO boards, and the ID number 2 to the TT DIO board.

/sbin/insmod ao_rtcore dmb=0,1 ttb=2

2.4 Data Flows to User Space

The RTCORE creates several data paths when loaded. These data paths allow the LabVIEW user
space application to have access to the acquired data, module status, and to configure the module
behavior. Table 2.1 summarizes the available data paths and their characteristics.

Table 2.1: Data Paths to the RTCORE Kernel Module

Name Type Description Size

/dev/rtf1 FIFO Control FIFO 1024 bytes

/dev/rtf2 FIFO Response FIFO 1024 bytes

/dev/rtf3 FIFO TT Loop Data FIFO 5440 bytes

/dev/rtf4 FIFO AO Loop Data FIFO 694400 bytes

CTRL_I Shared Memory 32 bit INT Data Structure 8 bytes

CTRL_F Shared Memory Double Precision Data Structure 37.8 Kbytes

BANK_I Shared Memory 16 bit UINT Artificial Pattern 12800 bytes

DARK_I Shared Memory 16 bit UINT Bias Frame 12800 bytes

MASK_I Shared Memory 16 bit UINT Bitwise Frame Mask 12800 bytes

2 Only if using the PDAQ DIO board.

7 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

Name Type Description Size

GRID_X Shared Memory Double Precision Calculation Grid 50 Kbytes

GRID_Y Shared Memory Double Precision Calculation Grid 50 Kbytes

WEIGHT Shared Memory Double Precision Weights Mask 50 Kbytes

/dev/soartt Device File Open/Close/Write/Ioctl interface N/A

2.4.1 Control and Response FIFO

There is a control FIFO (/dev/rtf1) to receive string commands and a response FIFO (/dev/rtf2) to
send back string responses. The two are created by the init_module() routine in file osLx24.c.

The RTCORE assigns a handler to the control FIFO so that every time a user space application
writes a command to this FIFO, the command gets executed and a response is sent back. The handler is
implemented by the routine sao_command_handler() in file osLx24.c. The format of the message is
defined by a data structure of type AO_MESSAGE

typedef struct {
 int len;
 char buffer[BUFSIZE];
} _AO_MESSAGE;

The header is the length of the string command and the buffer is the string command itself. Most of
the module behavior is configured using the command list that follows

AO control loop commands. The commands are implemented by the ao_service() routine in the
aoLib.c file.

aofg open - Open the AO control loop.

aofg close - Close the AO control loop.

aofg irq <widht> <height> <binning> - Runs the AO control loop over an artificial
pattern stored in the BANK_I shared memory buffer. User specifies the geometry of the
artificial pattern. With no arguments return the number of interrupts so far served by the
RTCORE.

aofg reset – Reset the interrupts counter, the out of sync flag and the max latency stored
value.

aofg sete <electrode> <board> <channel> - Set the table entry mapping the DM
actuator electrode to the specified board and channel. The electrode look-up table
corresponds to the element eltrd[] of the CTRL_I data structure (see section 2.4.4)

aofg eltrd <index> <volts> - Set the DM electrode index to the specified voltage value
volts. The look-up table in t_ctrl_int is used to map the electrode index to a board and
channel number.

aofg eltrd_adu <board> <channel> <value> - This is an engineering command. User

RTSOFT Programmer Manual Rev 3.11, May 2013 8

Chapter 2:The Real-Time Core

specifies the board, the channel and value in volts (10 to +10).

aofg echo - Test the aofg service. The expected response is “Hello from aofg!”.

aofg simdm [0 | 1] - Toggles the flag that enables/disables the writing to the DAC
boards. When set to 1 no voltage will be written to the DAC boards.

aofg apos <sub-aperture> <lx> <ly> <ux> <uy> - Set the sub-aperture box position.
These are the row-column coordinates in non-binned units. With no arguments other
than the sub aperture id, returns the box position and size.

aofg rshift <sub-aperture> <xshit> <yshift> - Get/set the reference positions. This is the
vector between the sub-aperture box center and the spots produced with the reference
beam in non-binned units.

aofg di < k | kl > <value> - Digital integrator parameters. With no arguments this
command returns a string containing three values: 0 or 1 to indicate if the control law is
in use, K and KL. The difference equation representing this digital controller is y(k) =
KLy(k-1) + Kx(k).

aofg sd <sub-aperture> - Returns the current slope measurement for the given sub-
aperture, and the current flux measurement after bias and background subtraction.

aofg sp [k | kl | ks | on | off] - Use this command to configure the Smith digital
controller. The difference equation describing the controller is y(k) = (KL – KS)y(k-1) +
KSKLy(k-2) + Kx(k). With no arguments this command returns a string containing four

values: 0 or 1 to indicate if the control law is in use, K, KL and KS

on - activates the SP digital controller.

off – deactivate the use of the SP digital controller.

k <k> - sets the SP controller gain.

kl <kl> - sets the SP leaky parameter.

ks <ks> - sets the SP parameter.

aofg abgnd <sub-aperture> – Return average background for sub aperture.

aofg etime – Return four numbers indicating the elapsed time during execution of the
control loop logic, time between calculations, max time between calculations and out of
sync flag. Units of nanoseconds.

aofg ns <value> - Set the number of useful sub-apertures in the WFS.

aofg nprobes <value> - Set the number of background probes.

aofg tilt [0 | 1] - Turn on/off the tilt subtraction flag. If active the component in the
slopes corresponding to tilt (z2 and z3) will be removed.

9 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

aofg Tfx <T11> <T12> <T21> <T22> - Set the transformation matrix between WFS X-
Y coordinates and Guide Probes X-Y coordinates.

Centroid library commands. The commands are implemented by the cc_service() routine in the
centroidLib.c file.

cc ref4 <amplitude> <sigma> – Define a convolution pattern for using with the cross
correlation algorithm. The convolution pattern is a Gaussian located at the center of the
box ((2,2) for a 4x4 box). The arguments are an amplitude and sigma.

cc ref8 <amplitude> <sigma> – Define a convolution pattern for using with the cross
correlation algorithm. The convolution pattern is a Gaussian located at the center of the
box ((4,4) for 8x8 box). The arguments are an amplitude and sigma.

cc dark <0 | 1> - Turn bias subtraction on and off. The bias pattern has to be previously
written to the shared memory buffer DARK_I.

cc bgnd <0 | 1 > - Turn the background subtraction on and off.

cc abgnd – Return the average background estimation for each CCD quadrant.

cc algorithm <WCoG = 1 | CC = 5> - Selects between the Weighted Center of Gravity
and the Cross Correlation method.

cc m – Minimum allowable signal parameter. The readout noise is multiplied by m and
then compared to the max pixel value to decide if the signal is below the acceptable
value.

cc Nr – Readout noise in ADU.

cc NT – Size of the spot for the Cross Correlation method template.

cc Nw – Size of the spot for the Weighted Center of Gravity template.

Tilt control commands. The commands are implemented by the tt_service() routine in the
ttLib.c file.

tt rot <angle> – With no arguments returns the current rotation angle in units of radians.
Otherwise set the rotation correction angle to angle degrees.

tt m3 [K | open | close | etime | enable | disable | test | source] - M3 loop control
commands.

KC1 <gain> With no arguments returns the current gain of the SOAR M3
controller integrator. Otherwise set the integrator gain to gain.

LP1 <KLP1> <aLP1> With no arguments return the low pass filter parameters for
the LLT M3 offload. Otherwise set the parameters to the given values.

RTSOFT Programmer Manual Rev 3.11, May 2013 10

Chapter 2:The Real-Time Core

open – open the M3 control loop. The tilt command to the M3 is set to zero.

close – close the M3 control loop.

etime – return the elapsed time during last centroid calculation in units of [ns].

enable – enable integrator. Input to the controller is set to the tilt error signal
from the the selected source (WFS or TT probes).

disable – disable integrator. Input to the controller is set to zero. The last tilt
command to the M3 is preserved.

HstarZ <h11> <h12> <h21> <h22> – With no arguments return the current Zero
rotation reconstruction matrix HZ*. Otherwise set the HZ* to the given values.

Hstar – return the current tilt reconstruction matrix. This matrix translate guide
probes x-y coordinates in arc-seconds to SOAR M3 el-az coordinates in [ADU]
including Nasmyth rotation and mount elevation effects.

test [gamma | beta | none] – enable the module to receive user defined
waveforms and add them to the M3 command word. Option gamma will enable
elevation. Option beta will enable azimuth, and none will disable the feature.

source [wfs | probes] – select between WFS and TT probes as source of the tilt
error signal.

wobble [on | off | radius | period] – handles the wobble tool parameters.

on – start calculating and adding wobble offset to the M3 command.

off – stop calculating and adding wobble offsets to the M3 command.

radius <radius> – set the radius of the circle described by M3 when
wobbling. Units are TBD at this time.

period <period> – set the period when describing a complete circle in
units of seconds.

tt llt [KC3 | open | close | enable | disable] - LLT loop control commands.

KC3 <KC3> With no arguments return the current gain of the LLT M3 controller
integrator. Otherwise set the gain to gain.

KC4 <KC4> With no arguments return the current proportional gain of the LLT

11 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

M1 controller. Otherwise set the parameter to the given value.

LP4 <KLP4> <aLP4> With no arguments return the low pass filter parameters for
the LLT M3 offload. Otherwise set the parameters to the given values.

open – open the LLT control loop. The tilt command to the LLT is set to zero.

close – close the LLT control loop. The output of the integrator is stored in test
point 4.

enable – enable integrator. Input to the controller is set to the tilt error signal
from the WFS.

disable – disable integrator. Input to the controller is set to zero. The last tilt
command to the LLT is preserved.

HstarZ <h11> <h12> <h21> <h22> – With no arguments return the current Zero
rotation reconstruction matrix HZ*. Otherwise set the HZ* to the given values.

Hstar – return the current tilt reconstruction matrix. This matrix translate guide
probes x-y coordinates in arc-seconds to LLT M3 az-el coordinates in [V]
including Nasmyth rotation and mount elevation effects.

offset <EL> <AZ> – add a user defined amount of offset to the analog voltages to
the LLT M3 piezos. EL corresponds to electrode 60 and AZ to electrode 61. Very
useful to diagnose if the RTCORE is capable of controlling the M3 PZT voltages.
With no arguments returns the current offset values.

tt KC2 <gain> – With no arguments return the current mount controller gain. Otherwise
set the current mount gain set the current mount gain to gain.

LP2 <KLP2> <aLP2> With no arguments return the low pass filter parameters for the M3
offload to the Mount. Otherwise set the parameters to the given values.

tt tp [3 | 4] – Return selected test-point value. See Figure TBD.

3 – Return the mount correction in GP x-y coordinates and units of arc-seconds.

4 – Return the LLT M1 correction in GP x-y coordinates and units of arc-
seconds.

tt n <base>– With no arguments return the current time base multiplier for the TT
probes sampling loop. Otherwise set the sampling time to base times the time base of
10ms. base must be lower than 100.

RTSOFT Programmer Manual Rev 3.11, May 2013 12

Chapter 2:The Real-Time Core

tt setc <channel> <probe> <quad> With no arguments return the current map relating
APD channel channel to tilt probe probe and probe quadrant quad. Otherwise maps APD
channel channel to quadrant quad of tilt probe probe.

tt pweight <wp1> <wp2> With no arguments return the current weight assigned to each
probe in the centroid error calculation. Otherwise set the weights to the given values
wp1 and wp2.

tt bias <0 | 1> - With no arguments return the current bias flag. Otherwise turn bias
subtraction on and off.

tt setbias <channel> <bias> - With no arguments return the current bias for the given
channel. Otherwise set the bias to the given value. Parameter channel can take value 0 to
7. Parameter value is in units of [photon-counts].

tt minf <mf1> <mf2> - With no arguments return the current min flux to calculate tilt
errors for each guide probe. Otherwise set the min flux to the given values. Parameters
mf1 and mf2 are in units of [photon-counts].

tt lock <0 | 1> <0 | 1> - Control which guide probe is used for guiding.

2.4.2 AO Loop Data FIFO

There's also a FIFO (/dev/rtf4) to offload AO loop variables to the user space. This FIFO gets
created by the ao_init() routine in file aoLib.c. Every time the routine ao_task() is executed, a data
structure is filled with loop variables and put in the FIFO.

Each element is a data structure of type _AO_DATA (aoLib.h). The structure contains 6 elements: a
time stamp, the x-y tilt error, the x-y slopes, and the DM & LLT M3 voltages. The size of the data
structure is 1768 bytes (NS=77, AV_MAX=64).

typedef struct {
double ns; /* time stamp in nanoseconds */
double tx; /* tilt error in x */
double ty; /* tilt error in y */
double sdx[NS]; /* sub-aperture gradients in x */
double sdy[NS]; /* sub-aperture gradients in y */
double vol[AV_MAX]; /* DM & LLTM3 voltages */

} _AO_DATA;

The size of the FIFO buffer was selected assuming the AO loop is pushing data into the FIFO at a
maximum rate of 1KHz, the user space loop is popping data from the FIFO at a rate faster than 10Hz,
and imposing the requirement that the time to fill the buffer was four times the pop period (2.3).

(Pop Period) < 0.25 × (Time to Fill Buffer) (2.1)

13 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

(Time to Fill Buffer) = (Push Period) ×
(Buffer Size)

(Data Structure Size)
 (2.2)

(Buffer Size) >
4 × (Pop Period) × (Data Structure Size)

(Push Period)
 (2.3)

Since the size of the data structure is 1736 bytes, at 1KHz the AO loop pushes data into the FIFO
every 1ms, and at 10Hz the user space pops data every 100ms, the size of the FIFO buffer must be at
least 694,400 bytes.

2.4.3 TT Loop Data FIFO

FIFO /dev/rtf3 is used to offload TT loop variables to the user space. The FIFO gets created by the
tt_init() routine in file ttLib.c. Every time the control routine tt_100Hz_task() runs, a data structure is
filled with TT loop data variables and put in the FIFO.

The data structure is of type _TT_DATA (ttLib.c). The structure contains 8 elements: a time stamp,
the weighted x-y tilt error, the photon counts, the M3 position command, and the raw tilt errors. The
size of the data structure is 152 bytes (NP=8, NTT=2)

typedef struct {
double ns; /* time stamp in nanoseconds */
double ex; /* weighted tilt error in x */
double ey; /* weighted tilt error in y */
double c[NP]; /* photon counts */
double gamma; /* m3 command for elevation */
double beta; /* m3 command for azimuth */
double tx[NTT]; /* tilt errors in x */
double ty[NTT]; /* tilt errors in y */
double ox; /* wobble tool offset in x */
double oy; /* wobble tool offset in y */

} _TT_DATA;

The size of the FIFO buffer was selected assuming the TT loop is pushing data into the FIFO at a
maximum rate of 100Hz, a user space loop is popping data from the FIFO at a rate faster than 10Hz,
and imposing the requirement that the time to fill the buffer was four times the pop period.

Since the size of the data structure is 152 bytes, at 100Hz the TT loop pushes data into the FIFO
every 10ms, and at 10Hz the user space applications pops data every 100ms, the size of the FIFO buffer
must be at least 6080 bytes (2.3).

2.4.4 CTRL_I Shared Memory Buffer

The 32 bit signed integer data buffer (CTRL_I) holds the t_ctrl_int data structure (aoLib.c). It
contains the status of the AO control loop and the time spent in calculation on each loop cycle.

typedef struct {
int track; /* open/closed loop */

RTSOFT Programmer Manual Rev 3.11, May 2013 14

Chapter 2:The Real-Time Core

int etime;
} t_ctrl_int;

2.4.5 CTRL_F Shared Memory Buffer

The double precision float data buffer (CTRL_F) holds the t_ctrl_float data structure (aoLib.c). It
contains the arrays to store x-y slopes, flux and background for each sub-aperture, the x-y tilt error, and
the DM voltages.

typedef struct {
double sdx[NS]; /* x sub-aperture shift */
double sdy[NS]; /* y sub-aperture shift */
double flux[NS]; /* sub-aperture flux */
double bgnd[NS]; /* sub-aperture bgnd */
double tx; /* x tilt measurement */
double ty; /* y tilt measurement */
double nvol[AV_DM]; /* nominal DM voltages */
double vol[AV_DM]; /* current DM voltages */

} t_ctrl_float;

2.4.6 RMAT_X and RMAT_Y

Floating point buffers of max size AV_DM by NS to hold the reconstructor matrices for X and Y
slopes. Implemented in aoLib.c.

2.4.7 BANK_I Shared Memory Buffer

16 bit signed integer buffer to pass an artificial image of max size 80x80. Data is to be stored in this
buffer in quad readout interlaced mode to optimize performance. Implemented in aoLib.c.

2.4.8 DARK_I Shared Memory Buffer

16 bit signed integer buffer to pass a bias calibration frame of max size 80x80. Data is to be stored
in this buffer in quad readout interlaced mode to optimize performance. The name was kept for
historical reasons only. Implemented in centroidLib.c.

2.4.9 MASK_I Shared Memory Buffer

16 bit signed integer buffer to characterize pixels in the frame. Each element in the buffer is a
bitwise mask that defines the sub-aperture owner, its amplifier in the CCD, if it is a background pixel,
and if it is a bad pixel. Data is to be stored in this buffer in quad readout interlaced mode to optimize
performance. Implemented in centroidLib.c.

Bits 15-8 : Sub-aperture ID. Pixels not owned by any sub-aperture are marked 0xFF.

Bit 7-6 : Amplifier number

Bit 4 : Background pixels. 1 background pixel. 0 regular pixel.

Bit 0 : Bad pixels. 0 bad. 1 good.

15 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

2.4.10 GRID_X and GRID_Y Shared Memory Buffers

Double precision buffer to pass x and y centroid weights. Implemented in aoLib.c.

2.4.11 WEIGHT Shared Memory Buffer

Double precision buffer. Eventually this buffer can be used to pass flat field corrections also.
Implemented in aoLib.c.

2.4.12 Device File /dev/soartt

The device file interface allows the user space application to inject user defined waveforms to the
M3 mirror. The interface supports the open, close, write and ioctl file operations.

Typically the user space application will use the write operation to pass waveform data in units of
ADU (+/- 32768). The implementation of the write operation sao_write(), will take the data and will
write to one of two buffers until its full. At that point the write operation will block until all the samples
in the other buffer have been generated and sent to the M3 mirror by the 100Hz task tt_100Hz_task().
When the 100Hz task has finished with the current buffer, it switches to the other and unblocks the
write operation so it can start filling the one that is now free. In this way the 100Hz task keeps cycling
between the two buffers while the user space application writes big chunks of waveform data.

The synchronization between the 100Hz task and the write operation is obtained by using a “system
request”. The 100Hz task calls rt_pend_linux_srq() at each end of block to trigger the non real-time
system request handler. This technique allows for a real-time task to indirectly use the non real-time
kernel mechanisms for wait-queues. In this case when sao_write() finds that the buffer is full, the
process is put to sleep (interruptible_sleep_on()) until it is awakened by the system request handler
(wake_up_interruptible()).

2.5 DM Control Loop

The CCD controller interface board generates an interrupt every time an image transfer to memory
is completed (a progressive read might be explored if necessary). That interrupt triggers the interrupt
handler astropci_intr() in its software driver module astropci.o, which in turns triggers the execution of
a bottom-half interrupt handler implemented by the ao_task() routine in aoLib.c.

A pseudo code version of the DM control algorithm follows. The argument to subroutine ao_task()
is the current frame memory address. NS is the number of sub-apertures and AV the number of actuator
voltages.

void ao_task (unsigned short *frame)
{
 while (1) {
 rt_task_suspend(); /* sleep waiting for interrupt */
 for (i=0; i<NS; i++) { /* x-y slopes */
 cc_slopes(frame,&(subap[i]),&(sdx[i]),&(sdy[i]));
 sdx[i] -= px[i]; /* references */

RTSOFT Programmer Manual Rev 3.11, May 2013 16

Chapter 2:The Real-Time Core

 sdy[i] -= py[i];
 }
 for (i=0; i<AV; i++) {
 for (j=0, evol=0.0; j<NS; j++) { /* slopes to voltages */
 eK += recmatx[i][j] * sdx[j] + recmaty[i][j] * sdy[j];
 }
 /* digital controller */
 volK[i] = K1 * volK-1[i] + K2 * volK-2[i] + K3 * eK;

/* voltage generation */
 dm_save_to_buffer(board, j, value[j]);
 }
 dm_flush_buffer(board, j, value[j]);
 }
}

The algorithm calculates the x-y slopes for each sub-aperture, subtracts the reference, and then
multiplies the resulting vector by the reconstruction matrix to obtain a vector of voltages. This vector is
then filtered (digital controller) and the resulting command vector is applied to the mirror. The digital
controller parameters K1, K2, and K3 are selected depending on the selected type of filter (SP or Simple
Integrator) according to the following recipe (see section 2.5.2 below)

Smith Predictor: K1 = KL – KS; Integrator: K1 = KL;
K2 = KL x KS; K2 = 0;
K3 = -K; K3 = -K;

To accommodate for the LGS and TSLGS modes of operation, the real code for the DM control
algorithm is capable of preventing the DM from correcting tilt. The tilt component is estimated by
averaging the slopes and then subtracted and the reconstructor is replaced with a version with its
average slopes subtracted (see sections 3.3.7.2 and 3.3.7.3 below).

17 RTSOFT Programmer Manual Rev 3.11, May 2013

Figure 2.1: The WFS measures the residual wavefront slopes. The residual wavefront is projected to the DM actuators
voltage space to be filtered by the controller. The resulting voltages are added to the nominal operation point voltages

and then applied to the DM.

WF
DM

H* G
C

G
DM

G
WFS

S
REF

S
SA

S
ERR

V
ERR

WF
ATM

WF
RES

+
++ _

+5

-5

V
FLAT

+
+

Chapter 2:The Real-Time Core

2.5.1 Centroid Algorithms

The RTCORE supports two centroid algorithms: Cross Correlation (CC) and Weighted Center of
Gravity (WcoG). The algorithms are implemented in the file centroidLib.c. The entry point for both
algorithms is the routine cc_error (). Which algorithm is to be used depends on the current value of the
local variable cc_algorithm.

Cross Correlation. The method is implemented by the routine cc_do_cross_correlationc4().
Each sub-aperture box is convoluted in the Fourier domain, with a predefined Gaussian spot
template. The size of the spot template is defined by the local variable cc_Nw (cc Nw
command). The result is analyzed to find the max value C0 and then do a parabola fit through
three points to estimate the spot position (2.4). The position returned by the algorithm, is
referred to the center of the box. For example, for a 8x8 sub-aperture box, the pixel in first
row/first column has coordinates (-3.5,-3.5).

x̂ = xMax + 0.5×
C−1 − C1

C−1 + C1 − 2C0

 (2.4)

Weighted Center of Gravity. The method is implemented by the routine cc_cmass_quad().
Each sub-aperture box is multiplied by the calculation grid mask (GRID_X and GRID_Y
memory buffers, section 2.4.10) and the weights mask (memory buffer WEIGHT, section
2.4.11) as defined in equation (2.5). The coefficient is needed to ensure unit response [TBD]. 
NT is the FHWM of the spot in pixels (local variable cc_NT), and Nw is the FWHM of the
weighting function (local variable cc_Nw). Both parameters can be defined using the cc NT and
cc Nw RTCORE commands.

x̂ = γ
∑ x I x , y (Fw)x , y

∑ I x , y (Fw)x , y

 (2.5)

RTSOFT Programmer Manual Rev 3.11, May 2013 18

Figure 2.2: The Bias Frame is subtracted to estimate the background. The background is
also subtracted to estimate the x-y spot position.

SUBTRACT
BIAS

Quad Frame

Sub-aperture
Geometry

Bias Frame

Single ROI

BGND
FILTER

MAX

CENTROID

SDX

SDY

Chapter 2:The Real-Time Core

γ =
NT

2 +Nw
2

Nw
2 (2.6)

Both implementations include support for discarding bad pixels, bias subtraction, and background
subtraction. After bias and background subtraction, negative values are discarded and only positive
values are used to estimate the spot position.

2.5.1.1 Bad Pixels

Bit 0 of the bitwise frame mask in buffer MASK_I (see section 2.4.9 above) is used to check if
pixels are good or bad. Bad pixels are ignored by the centroid algorithms.

2.5.1.2 Bias Subtraction

A bias frame is subtracted from each acquired image before calculating the centroid on each sub-
aperture. The bias frame is stored in buffer DARK_I (section 2.4.8). Is to the user to keep the bias
frame up to date, depending on the current readout parameters.

2.5.1.3 Background Subtraction

A leaky average is calculated on each bias-subtracted sub-aperture, at each loop cycle. The sub-
aperture pixels to use in the average are defined by bit 4 of the bitwise mask MASK_I (section 2.4.9).
The background estimate for each sub-aperture is then subtracted before estimating the centroid.

Bgnd L(k) =
Bgnd (k) + f L× Bgnd L(k −1)

1 + f L

 (2.7)

2.5.1.4 Sub-aperture Flux

For each sub-aperture the RTCORE estimates its flux as the result of adding all the good pixels, as
defined by the bitwise frame mask. The sub-aperture pixels are first bias and background subtracted.
The estimate is store in the flux element of the roi data structure linked to each sub-aperture
(centroidLib.h), and is accessible from user space through the sd command (see section 2.4.1).

2.5.2 Digital Controller

The difference equations for the digital controllers supported by the RTCORE are as follow [TBD].
The general equations are

v k  = K L – K Sv k−1  K S K L v k−2  K  v k  Smith Predictor (2.8)

19 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

v(k) = K L v(k−1) + K Δv(k) Integrator (2.9)

v(k) is the voltage at time kT (k=0,1,... and T=loop time), and v(k) is the voltage error at time kT
obtained from multiplying the slopes by the reconstructor matrix. The two are implemented by the
function ao_task() in file aoLib.c in a generic way as

v k  = K1 v k−1  K 2v k−2K 3  v k  (2.10)

where K2 is zero when the pure integrator is used. The values for the different parameters can be set
using the aofg sp and aofg di commands.

2.5.3 Voltage Generation

Voltage generation is accomplished by first filling a generation buffer with the output voltages of the
digital controller, and then flushing that buffer to update the D/A outputs of the DAQ boards
(Waveform Regenerate Mode) . This is the fastest method of generation since single output generation
adds too much overhead. The single update mode was discarded; best performance is 66us per channel,
which means 4ms for 60 channels in sequential mode.

Under Waveform Regenerate Mode, the board continuously recycles through a data set resident in
its DSP buffer without fetching any new data. The transfer mode selected was standard mode. In this
mode data are stored in the DSP buffer in a format where the channel number and associate actions are
combined with output code. This mode is capable of achieving up to 455K samples/second.

The Analog output board needs a clock to instruct it how quickly to process entries in the channel
list. The clock can be external or internal. It was chosen to use the internal clock which has a time base
of 11Mhz. That give us a limit of 90.9 [ns] for each channel, so if we consider all 60 channels that leave
us with a minimum of 5.454 [us]. To give time to the DSP to empty the FIFO before the next set of
voltages is ready, it was decided to use a clock divider of 10.

DIO routines are implemented in the dmLib.c file. The routines define a tailored API to the Power
DAQ drivers [6].

2.6 SOAR M3 Control Loop

The M3 control loop is implemented by the tt_100Hz_task() and tt_1KHz_task routines (ttLib.c).
The 100Hz periodic task counts the photons received by the APD modules (8 channels), and then
obtains the weighted averaged x-y tilt error vector. The 1KHz periodic task samples the x-y tilt error
vector and passes it to the integrator to obtain the next command to the M3. A pseudo code version of
the TT control algorithm follows.

void tt_100Hz_task ()
{

RTSOFT Programmer Manual Rev 3.11, May 2013 20

Chapter 2:The Real-Time Core

 apd_start_counters(); /* start counting photons */
 while (1) {
 rt_task_wait_period();
 apd_centroid (&x, &y);   /* tilt error signal */
 }
}

void tt_1KHz_task ()
{
 while (1) {
 rt_task_wait_period();
 xk = xk-1 + K * x k-1;
 yk = yk-1 + K * y k-1;
 [gammak betak]= 32768 + [Hstar][xk yk];
 m3_send_command (gammak, betak);
 }
}

The x-y tilt error plus other parameters are off loaded through the RTFIFO /dev/rtf3 to user space for
later processing.

2.6.1 Centroid Algorithm

The photon counting support is implemented in the library apdLib.c. This library is a wrapper
around ni660x driver module. The ni660x module is the Linux driver for the counter timer PXI board
NI6602. The library API defines three functions: apd_init(), apd_centroid(), apd_cleanup(). apd_init()
configures the eight counters in the NI6602 board, and apd_centroid() returns the x-y centroid.
apd_cleanup() stop the counters.

ex =
(F2+F4)−(F1+F3)

F1+F2+F3+ F4
ey =

(F1+F2)−(F3+F4)

F1+F2+F3+ F4
 (2.11)

The algorithm is a classic quad centroid (2.11). The convention for the x-y coordinate system and

21 RTSOFT Programmer Manual Rev 3.11, May 2013

Figure 2.3: TT probe x-y coordinate system. The convention follows the one
proposed in document [7].

x

y
F3

F4

F1

F2

Chapter 2:The Real-Time Core

fiber labels, follows the one proposed in document [7]. When both TT probes are used, the error vector
for each probe is weighted and then added. Weights are normalized to sum 1. The criterion to defined
the weight values is TBD.

e⃗=w1 e⃗TTP1 + w2 e⃗TTP2 (2.12)

2.6.1.1 Bias Subtraction

A bias is subtracted from each fiber reading before calculating the centroid on each probe. The
default value for the bias is zero. Is to the user to keep the bias numbers up to date. One would expect
the user space application to take care of that matter.

2.6.2 Digital Controller

The digital controller is implemented by the tt_1KHz_task() routine. The task continuously
integrates the x-y tilt error, and then sends the result to the M3 servo mechanism in El-Az coordinates.

The z-transform of the chosen compensator3 is

GC1 z  =
KC1

 z − 1
 (2.13)

The difference equation describing the filter used is

 ,k  =  ,k−1  KC1×  ,k−1 (2.14)

The implementation allows to enable and disable the integrator by making the second term in (2.14)
zero, causing the integrator to hold the last output value produced. The motivation for this feature is the
operational need of temporarily holding the last mirror position while having the guider x-y stages do
an automatic compensation of a telescope offset (follow mode) without loosing the object.

The gain K can be adjusted using the tt m3 KC1 command. For more details read SDN-8307.

2.6.3 X-Y to M3 Coordinates

The relation between the integrator output command in x-y coordinates, and the actual M3
command in El-Az coordinates, is given by the reconstructor matrix H*

M3 which is dependent on the
M3 elevation gain GEL in ADU/arc-second, the M3 azimuth gain GAZ in ADU/arc-second, the
mechanical rotator angle r, the telescope mount elevation angle e, and a zero rotation angle z.

cElAz = H*
M3 c xy (2.15)

3 Compensator selection was based on M. Warner simulations of the TT control loop.

RTSOFT Programmer Manual Rev 3.11, May 2013 22

Chapter 2:The Real-Time Core

Internally, for doing its calculations the RTCORE use Guide Probes x-y coordinates in arc-seconds
to reference the M3 command, independent of the tilt error source selected (WFS or Guide Probes).
When the WFS is selected the tilt error is first transformed to GP x-y coordinates using (2.16).

[XGP

Y GP
] = [0.016743 −0.314435

−0.314435 −0.016743] [XSD

Y SD
] = WFSscale×[−1 0

0 1][cos 93o
 −sin 93o



sin 93o
 cos 93o

][X SD

Y SD
] (2.16)

The reconstructor matrix in (2.15) can be decomposed in a zero rotation reconstructor term H*
M3,z

and a rotation matrix term R. For SAM that relation is given by (2.17).

[EL
AZ] = [GEL 0

0 GAZ
][cos T EL−T ROT  −sinT EL−T ROT 

sin T EL−T ROT cosT EL−T ROT ] [XGP

Y GP
] (2.17)

H*
M3,z is precomputed and passed to the RTCORE at boot time (2.18). R is computed every 2[s]

based on the current rotator mechanical angle and mount elevation, and multiplied by H*
M3,z to obtain

H*
M3.

H M3 ,Z
*

= [1170.3 0
0 1638.4] = [

65535
4×14"

0

0
65535
4×10"

] (2.18)

2.6.4 M3 Command Generation (Only for PDAQ DIO Board)

The RTCORE updates the set-point of the M3 servo mechanism using the command interface
described in the Tertiary Mirror Assembly interface document. To generate the command signals, the
computer has installed a PowerDAQ multichannel DIO board. The driver module for the board is
provided by the vendor4. A small wrapper tailored for the RTCORE application was written (m3Lib.c
and m3Lib.h), capable of configuring the DIO board in the appropriate operation mode, and of
encapsulating the packaging of the command words. The interface to the wrapper is given by the
following routines:

m3_init() – initializes data structures and hardware

m3_cleanup() – stops signal generation a free data structures

m3_send_command() – packs and sends the two words representing tip tilt position angles.

The DIO board has 4 ports of 16 channels each. The m3Lib.c implementation uses channels 0, 1,
and 2 from port 0 to output the command signals. The strobe signal is generated through channel 0, the
data bits through channel 1 and the clock signal through channel 2 (Table 2.2). To accommodate all
three signals the number of points per channel was chosen to be 35: 1 start bit (low), the 32 data bits for
the two 16 bits commands, 1 bit high for the strobe signal, and then 1 end bit (low). The 35 points are
accommodated in a buffer of size 70 bytes (Figure 2.3); for each point to transmit, two memory bits

4 For details on installation of the PowerDAQ driver modules read document [6].

23 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

have to be allocated to accommodate a complete clock period (high and low).

Tabla 2.2: Channel assignments for the DIO board. All channels belong to port 0.

Channel Description

0 Strobe Signal

1 Data Bits

2 Clock

The points for all three channels are stored in the buffer using the PowerDAQ 32bit data format; bits
31-19 are unused, bits 18-16 represent the target port number (from 0 to 3), and bits 15-0 hold the
binary data to output (LSB is channel 0).

The 1KHz task fills the buffer and send the command to the M3 by calling the routine
m3_send_command(). The routine packs the two 16 bit command words into the output buffer using
the format above and then triggers digital output by the DIO board.

2.6.5 User Defined Waveforms

User defined waveforms can be injected using the device character interface /dev/soartt. The way it
work was already described in section 2.4.12.

2.7 SOAR Mount Control Loop

The mount control loop is implemented by the tt_1KHz_task() routine. The task passes the
command signal to the M3 by a low pass filter and then multiplies its output by a simple gain. The
result is made available through the tt tp 3 command to the user space application to be sent to the TCS

RTSOFT Programmer Manual Rev 3.11, May 2013 24

Figure 2.4: The number of points per channel is 35. Each point is represented by two
consecutive 32 bit integers in the output buffer (one clock period).

1
2
3
4
5

64
65
66
67
68
69

0

0
0
0
0

0
0

.

.

.

1
1

0
0

0

X
X
X
X

0
0

.

.

.

0
0

X
X

0
00

0
1
0
1

1
0

.

.

.

0
1

0
1

0
1

... . .

0
0
0
0

0
0

.

.

.

0
0

0
0

0

0
0
0
0

0
0

.

.

.

0
0

0
0

0
00

0
0
0
0

0
0

.

.

.

0
0

0
0

0
0

... .

P
o
rt

0

cl
o

ck
d
a
ta

st
ro

b
e

B
it

3
1

B
it

1
5

Chapter 2:The Real-Time Core

at 1[Hz] (see section 3.3.17). For more details read SDN-8307.

2.7.1 Digital Controller and Low Pass Filter

The z-transform of the low pass filter and gain is

GLP2 z = K C2×
KLP2

z − aLP2
 (2.19)

The difference equation describing the filter is

x , y k  = aLP2×x , y k−1  KC2 K LP2× x , y k−1 (2.20)

When the M3 control loop is open, x,y(k-1) corresponds to the x-y tilt error measured directly by
the WFS or Probes. The value of the gain can be adjusted using the tt KC2 and tt LP2 commands.

2.7.2 X-Y SAM coordinates to X-Y SOAR TCS coordinates

For doing its calculations the RTCORE use Guide Probes x-y coordinates to reference the Mount
commands, independent of the error source selected (2.16).

For sending the Mount command the RTSOFT use SOAR TCS coordinates. For SAM that relation
is given by (2.21) where PA5 is the instrument position angle reported by the TCS.

[ XTCS

 Y TCS
] = [−cos −PA  −sin−PA 

−sin −PA  cos−PA ][ XGP

 Y GP
] (2.21)

2.8 LLT M3 Control Loop

The LLT M3 control loop is implemented by the tt_1KHz_task() routine. The task integrates the
residual tilt measured by the WFS (see section 2.5.1 above) under LGS mode and applies the resulting
command to the LLT M3 mechanism. For more details read SDN-8307.

2.8.1 Digital Controller

The z-transform of the integrator is

GC3 z  =
KC3

 z − 1
 (2.22)

The difference equation describing the equation above is

x , y k  = x , y k−1  K C3× x , y k−1 (2.23)

5 Angle between North and and YGP axis

25 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 2:The Real-Time Core

The implementation allows to enable and disable the integrator by making the second term in (2.23)
zero, causing the integrator to hold the last output value produced. The gain K can be adjusted using the
tt llt KC3 command.

2.8.2 X-Y SAM Coordinates to LLT M3 Piezoelectric-Voltages

For doing its calculations the RTCORE use Guide Probes x-y coordinates to reference the LLT M3
commands. For sending the LLT M3 command the RTSOFT use Piezoelectric Voltage coordinates. For
SAM that relation is given by (2.24).

[AZ
EL] = [hz11 hz12

hz21 hz22] [cos T EL−T ROT  −sin T EL−T ROT 

sinT EL−T ROT  cos T EL−T ROT ][X GP

Y GP
] (2.24)

The reconstructor matrix in (2.24) can be decomposed in a zero rotation reconstructor term H*
LM3,z

and a rotation matrix term R. H*
LM3,z is precomputed and passed to the RTCORE at boot time. R is

computed every 2[s] based on the current rotator mechanical angle and mount elevation, and multiplied
by H*

LM3,z to obtain H*
LM3.

2.8.3 LLT M3 Command Generation

Command generation is done using two spare channels (30 and 31 in board #2) available in the AO
boards used to generate voltages to control the DM. Read section 2.5.3 above for details.

2.9 LLT M1 Control Loop

The LLT M1 control loop is implemented by the tt_1KHz_task() routine. The task filters and
integrates the tilt command to the LLT M3. The result is made available through the tt tp 4 command
to the user space application to be sent to the LLT M1 at 1[Hz]. Read SDN-8307 for details.

2.9.1 Digital Controller and Low Pass Filter

The z-transform of the integrator and low pass filter is

GLP4GC4  z  =
K LP4

 z − aLP4
×

KC4

 z − 1
 (2.25)

The difference equation describing the equation above is

x , y k  = aLP4×x , y k−1  K LP4 KC4× x , y k−1 (2.26)

The implementation allows to enable and disable the integrator by making the second term in (2.26)
zero, causing the integrator to hold the last output value produced. The gain and filter parameters can
be adjusted using the tt llt KC4 and tt llt LP4 commands.

RTSOFT Programmer Manual Rev 3.11, May 2013 26

Chapter 2:The Real-Time Core

When the LLT control loop is open, the output x-y command is set to zero.

27 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

Chapter 3: The RTSOFT LabVIEW Application

3.1 Source Code

The source code for the RTSFOT LabVIEW Applications lives in directory Rtsoft/LV2010Modules.
To access the code is recommended to start by opening the main VI first:

% cd RTsoft
% labview Rtsoft.vi

Some of the modules include C code that has to be compiled and installed as shared libraries. Read
below for more details on how to build the shared libraries.

3.1.1 FITS

cd FITS/private/
make
make install

3.1.2 LV2010-RTAI3.8

cd LV2010-RTAI3.8/private/3.8
make
make install

3.1.3 MEMLIB

cd MEMLIB/private
make
make install

3.1.4 NI660X

cd NI660X/private
make
make install

3.1.5 SDSU-III

cd SDSU-III/private/astropciAPI_LIB/LINUX
make
make install
cd ../../astroIIILib/
make
make install

3.1.6 STFLIB

cd STFLIB/private/c
make
make install

29 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

3.1.7 TTCOMMSLIB

cd TTCOMMSLIB/private
make
make install

3.1.8 UNSCRLIB

cd UNSCRLIB/private
make
make install

3.2 Architecture

The LabVIEW part of the RTSOFT is made up of several individual tasks that together built up the
complete application functionality. These tasks communicate among them by means of global variables
and queues. Each task is basically a VI in which its block diagram is a while loop that runs until the
application exits.

Table 3.1 lists the LabVIEW tasks that built up the RTSOFT application. The main VI Rtsoft.vi
initializes the global variables and then launches the different tasks that will serve background jobs as
well as local and remote commands. Some of the tasks will run only on user demand; these tasks
typically represents the GUI front ends.

3.2.1 Consumer Producer Model for Data Acquisition

To serve the purpose of acquire data (e.g. slopes, voltages, CCD frames), analyze the data, present
the data and even close some very slow control loops based on that data, the RTSOFT has been built
using a consumer-producer model. In this model one task, called the producer (P), generates data by
some mean and makes it available to other tasks for them to use it, the consumers (C). RTSOFT has
basically three producers: the AO Loop Data Task, the TT Loop Data Task and the Frame Data Task.

3.2.2 Execution Threads

LabVIEW provides access to multi-threading mechanisms for the applications developed under its
environment. RTSOFT benefits of multi-threading by executing time critical tasks in their own thread
and by assigning priority to tasks within the same thread.

There is a limited number of execution threads available though: user interface, standard, instrument
I/O, data acquisition, other 1, other 2, and same as caller. The same with the available priorities:
background, normal, above normal, high, time critical, and subroutine. Table 3.1 summarizes the
execution thread and priority assignments for the RTSOFT tasks.

The effective use of multi-threading, calls for marking all VI's that are shared among threads as re-
entrant, thus high priority tasks can preempt lower priority tasks while running. RTSOFT uses re-
entrant VIs whenever possible, except for global variables. The LabVIEW native implementation of
global variables has proved to be unreliable, so the available workaround had to be used: type II global
variables. The penalty in the use of the type II global variables is that by definition they are non re-

RTSOFT Programmer Manual Rev 3.11, May 2013 30

Chapter 3:The RTSOFT LabVIEW Application

entrant, which opens space to situations in which a task will have to wait for other task to release the
variable despite its higher priority.

Table 3.1: RTSOFT tasks. The application is built grouping several tasks that together bring all the needed functionality.

VI Name Type6 Queue Running Thread Priority Description

RTsoft Always User interface Normal Main VI

rtsoft_task_loop_data P Always Data acquisition Time critical Reads AO Data from rtf4 @10Hz.

rtsoft_task_frame_data P Always Other 1 Normal Reads last frame @10Hz.

rtsoft_task_tt_loop_data P Always Data acquisition Time critical Reads TT data from rtf3 @20Hz.

rtsoft_task_mount Always Data acquisition Normal Send mount correction @1Hz

rtsoft_task_modal_optimization C 1 Always Data acquisition Normal Loop time, residual error, atmospheric parameters.

rtsoft_task_tt_performance C 11 Always Data acquisition Normal Loop time, flux.

rtsoft_task_rotator_angle Always Other 1 Normal Sets rotation angle in the RTCORE @0.5Hz.

rtsoft_task_LLT Always Data acquisition Normal Sends LLT correction @1Hz

parse_task Always Standard Normal Parse and execute string commands.

cx_task_server Always Instrument I/O Normal Receive command from the ICS.

cx_task_client Always Instrument I/O Normal Send commands to the TCS as a remote client.

hist_task Always Standard Background Log alarms and events.

rtsoft_simul_task Always Standard Normal Simulator engine.

rtsoft_gui_dm C 6 On Demand User interface Background DM user interface

rtsoft_gui_loop On Demand User interface Normal AO loop control user interface.

rtsoft_gui_wfs C 5 On Demand User interface High WFS user interface.

rtsoft_gui_display C 7 On Demand User interface Background WFS frame display.

rtsoft_gui_slope_statistics C 4 On Demand User interface Background Min, max, mean and variance of x-y slopes.

rtsoft_gui_histogram C On Demand User interface Background Last WFS image histogram.

rtsoft_gui_loop_data_recorder C 3 On Demand Data acquisition Normal User interface to save an AO data sequence.

rtsoft_gui_recerror On Demand User interface Normal Reconstruction error plot and value.

rtsoft_gui_sub-apertures C On Demand User interface Background Sub-aperture flux and background. Spot size.

rtsfot_gui_noise_propagation On Demand User interface Normal Noise Propagation for current WFS geometry.

rtsfot_gui_modal_coefficients C 8 On Demand User interface Normal Slopes, open and close loop modal coeficients.

rtsoft_gui_bias_calibration On Demand User interface Normal Take/save/apply bias calibration frames.

rtsoft_gui_mask On Demand User interface Normal Create/save/apply pixel masks.

rtsoft_gui_weights On Demand User interface Normal Create/save/apply weight templates.

rtsfot_gui_cc_centroid On Demand User interface Normal Create/save/ apply cross correlation templates.

rtsfot_gui_tt_loop On Demand User interface Normal TT control loop user interface.

rtsoft_gui_tt_centroid_statistics C 14 On Demand User interface Background Probes x-y error signal charts.

rtsoft_gui_tt_loop_data_recorder C 13 On Demand Data acquisition Normal User interface to save a TT data sequence.

rtsoft_gui_tt_flux C 12 On Demand User interface Normal Probes flux charts. P parameter for each APD.

6 P for producers and C for consumer tasks.

31 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

3.3 Implementation Reference

3.3.1 AO Loop Data Task

The AO Loop Data Task is implemented by the VI rtsoft_loop_data_task. The VI continuously reads
AO loop data coming from the RTCORE through RTFIFO 4 (/dev/rtf4), and injects the data in
independent queues for each consumer task (Table 3.1). If a consumer task is not running, then the loop
data task skips the queue and proceeds to the next consumer task in the list. The process repeats until
the application shuts down. As shown in Table 3.1, the AO Loop Data task is marked as a time-critical
priority task given the high need for its availability.

3.3.2 TT Loop Data Task

The TT Loop Data Tasks is implemented by the VI rtsoft_tt_loop_data_task, and follows the same
scheme that the AO Loop Data Task. The data is read from the RTCORE through RTFIFO 3 (/dev/rtf3).

3.3.3 Frame Data Task

The Frame Data Task is implemented by the VI rtsoft_frame_data_task. The VI continuously reads
a CCD frame from its shared memory buffer, and puts the frame in the global variable
rtsoft_global_typeII_frame along with other relevant statistics like min, max, mean, standard
deviation, total flux, and background. This is not a time critical task, since the data produced by this

RTSOFT Programmer Manual Rev 3.11, May 2013 32

Figure 3.1: Data acquisition in RTSOFT is built using a consumer producer model.

AO Loop Data Task

AO Loop Data
FIFO

Frame Data Task

Shared
Memory

TT Loop Data Task

TT Loop Data
FIFO

DM GUI

Recorder

Modal Coefs.

Performance

Statistics

WFS GUI

Flux Monitor

WFS Display

Recorder
Performance

Statistics

Chapter 3:The RTSOFT LabVIEW Application

task serves mainly for display purposes.

Before updating the global variable, the task does a bias and background subtraction. Pixel to pixel
bias subtraction is done by the rtsoft_disp_subtract_bias VI, using the bias calibration frame currently
loaded into the application. Only then the background is subtracted from each CCD quadrant by the
rtsoft_disp_subtract_bgnd VI. The background for each quadrant is obtained averaging the background
over the sub-apertures that belong to the quadrant, as measured by the RTCORE. The information on
what quadrant owns what pixel is in the bitwise frame mask in global variable
rtsoft_globals_typeII_mask.

3.3.3.1 Reading a Frame

In LabVIEW CCD Frames are read using the API provided by the CAMERALIB library. The PCI
interface board moves the image to the host memory in chunks of 1024 bytes. Thus the size of the
buffer containing the CCD frame in memory is a multiple of 1024. The rtsoft_frame_data_task calls
the cam_get_current_quad_frame to obtain the last frame in memory.

3.3.3.2 Quad-Unscrambling

The frames transfers to the host computer memory produce interlaced or scrambled images (Figure
3.2). Data must be unscrambled before doing any calculations to obtain coherent results.

The LabVIEW program unscrambles the frames before using or presenting its data by applying the
pseudo algorithm below.

33 RTSOFT Programmer Manual Rev 3.11, May 2013

Figure 3.2: Diagram showing the scrambling of the data produced by the quad CCD readout process.

Chapter 3:The RTSOFT LabVIEW Application

for (i=0; i < m; i++) {
 for (j=0; j < m; j++) {
 if (i < m/2) {
 if (j < m/2) /* A amplifier */
 dest[m * i + j] = src[(m/2 * i + j) * 4];
 else /* B amplifier */
 dest[m * i + j] = src[(m/2 * i + (m – 1 – j)) * 4 + 1];
 }
 else {
 if (j < m/2) /* D amplifier */
 dest[m * i + j] = src[(m/2 * (m – 1 – i) + j) * 4 + 3];
 else /* C amplifier */
 dest[m * i + j] = src[(m/2 * (m – 1 – i) + (m - 1 – j)) * 4 + 2];
 }

 }
}

3.3.4 WFS User Interface

The WFS User Interface is implemented by the rtsoft_gui_wfs.vi. It is a consumer task that
consumes data from both the AO Loop Data Task and the Frame Data Task.

3.3.4.1 Reference Positions

The reference positions represent the location of the reference spot for each sub-aperture relative to
the center of the calculation box. The RTCORE will measure the spot displacements relative to those
reference positions. The relative position is measured in pixels.

The reference spot positions are set in the RTCORE from the LabVIEW application through the
rshift command (see section 2.4.1)

The procedure to measure these relative positions is implemented in LabVIEW by the VI
rtsoft_wfs_reset_reference. The algorithm consist of, with the reference spots in the WFS, first average
a user defined number of slopes for each sub-aperture, and then add the resulting vector to the current
reference positions. Static aberrations, if any, are also added. The resulting vector is the new reference
position without static aberration compensation. The values are stored for saving and applied back to
the RTCORE plus aberrations.

3.3.4.2 Adding Static Aberrations to Reference Positions

It is a requirement to have the capacity of adding static aberrations to the corrected signal while in
closed loop operation. The RTSOFT produce that effect by converting a user defined set of aberrations
into offsets to the reference positions. The offset is obtained by multiplying the aberrations by the
average gradient matrix of the WFS, which returns a slope vector in units of pixels.

The static aberrations are kept in a text file and are added to the reference spot positions at the
moment of passing them to the RTCORE. That can happen when the user measure a new set of
reference spot positions (rtsoft_wfs_reset_reference), when the application loads a set of reference spot

RTSOFT Programmer Manual Rev 3.11, May 2013 34

Chapter 3:The RTSOFT LabVIEW Application

positions, and finally when the user interactively change and applies static aberrations
(rtsoft_gui_static_aberrations)

3.3.4.3 Display of Zernike Mode Estimates

Estimation of the Zernike Modes is straight forward by multiplying the inverse gradient matrix G*
by the slopes. This is done directly in the block diagram of the rtsoft_gui_wfs VI with the slope data
produced by the AO Loop Task. The Z coefficients are expressed in units of [um] (standard Zernikes)
in the WFS aperture.

3.3.4.4 Bias Calibration

Bias calibration frames acquisition is implemented by the parse_command_bias VI. The bias frame
is obtained by averaging a user defined number of bias frames and then passing the averaged bias to the
RTCORE in interlaced mode.

3.3.4.5 Pockels Cell

Operation of the Pockels Cell consists basically in activating and deactivating the opening and
closing pulses to the Pockels Cell high-voltage driver. Two operation modes are available: LGS and
TSLGS mode.

When LGS mode is selected the NI660X board in the PXI chassis is programmed to produce two
channel independent pulses in synchronism with the laser TRIGGER OUT signal. The delay between
the TRIGGER OUT signal and the first pulse is programmable as well as the separation between the
first pulse and the second pulse.

When TSLGS mode is selected the NI660X board is also programmed to produce two channel
independent pulses, but this time Continuous Pulse-Train Generation is used to produce the first pulse.
The period of the pulse-train is programmable as well as the delay between the first pulse and the
second pulse.

Selection and activation of either mode is also available remotely via string command interface.

3.3.5 WFS Display

Display of the WFS current image is implemented by the rtsoft_task_display VI. The task consumes
data produced by the Frame Data Task (rtsoft_task_frame). In particular it reads the global variable
holding a reduced image data rtsoft_globals_typeII_frame, every 80ms. The refresh time decrease
proportional to the zoom factor selected to keep CPU usage low.

The display task reads the global variable and then plots the data applying an auto-contrast
algorithm. The algorithm consists of passing the image pixel values through a look-up table to adjust its
dynamic range. Two algorithms are available to produce the look-up table: linear and sigma. The linear
algorithm takes the max and the min values and draws a line between them with min being 0 and max

35 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

being (216 - 1). The sigma algorithm use the mean and the standard deviation and draws a line from
one sigma below the mean to two three sigmas above the mean. The look-up table is updated every
500ms.

3.3.6 FWHM & Flux Monitor

The FWHM & Flux Monitor is implemented by the rtsoft_gui_sub-apertures VI. The task consumes
data produced by the Frame Data Task to plot data describing the spot size and flux for each sub-
aperture.

3.3.6.1 Spot Size (FWHM)

Though typically a nonlinear fit approach is the usual way to tackle the estimation of the size of the
spots, the real-time software followed a different approach to avoid the intensive calculations and the
lack of robustness (no convergence of the algorithm).

The implementation is provided by the STFLIB module and is based in the total flux for a well
sampled Gaussian spot given by (3.1)

ITotal = I max × 2
2 (3.1)

By first measuring the flux ITotal in the sub-aperture and then solving for , the size of the spot can
be obtained as (3.2)

FWHM =
2.355
2

I Total

I max

 (3.2)

RTSOFT Programmer Manual Rev 3.11, May 2013 36

Figure 3.3: Spot size estimate response. The method saturates when the
sampling of the spot is less than 1.5 [pixel].

Chapter 3:The RTSOFT LabVIEW Application

The method works reasonably well when the spot sampling is good (N ≥ 2). For values smaller than
that the method saturates. Figure 3.3 shows how the method behave depending on the sampling.

Other limitations that will certainly affect the response of the estimator are the readout noise and the
amount of flux collected. Also relevant will be the size of the spot with respect to the sub-aperture size,
since for big spots part of their flux will fall outside the sub-aperture boundaries and thus giving a
wrong number for the total flux estimation.

3.3.6.2 Sub-Aperture Flux

The sub-aperture flux is read periodically from the global variable rtsoft_globals_typeII_Flux which
in turn is updated by the Frame Data Task.

3.3.7 AO Loop Control User Interface

3.3.7.1 Interaction Matrix

The interaction matrix H relates the WFS error signal to the DM voltages. The procedure for
measuring the interaction matrix is implemented in LabVIEW by the VI
rtsoft_gui_measure_H_full_range. The algorithm is as follows

1. Set all DM electrodes to mid voltage range value.

2. Poke an electrode to the positive test voltage.

3. Average a user defined number of slope measurements.

4. Poke now the electrode to the negative test voltage.

5. Average a user defined number of slope measurements.

6. Subtract the two slope measurements and divide the result by twice the test voltage.

7. Repeat 1 to 6 for each DM electrode.

8. Reset all DM electrodes to mid voltage range value.

The number of slopes measurements to average is a parameter in the rtsoft.cfg configuration file.

3.3.7.2 SVD Reconstructor

The SVD reconstructor is obtained by inverting the interaction matrix using singular value
decomposition. All singular values below certain threshold are set to zero. These small values
correspond to weak modes that are rejected. A reconstructor with the average slopes subtracted is
computed as well for use in the LGS and TSLGS modes.

37 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

H *
= H−1 (3.3)

H *
nas = H − AverageTilts−1 (3.4)

The implementation of the procedure to obtain the SVD reconstructor is done in LabVIEW by the
VI rtsoft_rec_SVD_matrix_inversion.

3.3.7.3 Modal Reconstructor

When using a modal reconstructor the error signal delivered by the WFS is converted into modal
amplitudes by the inverse gradient matrix G*, and then the amplitudes are weighted and transformed to
voltages by the inverse projection matrix P*.

The implementation of the procedure to obtain a modal reconstructor matrix is done in LabVIEW by
the VI rtsoft_rec_modal_reconstructor_P_unknown.vi.

The projection matrix P is first approximated by multiplying the inverse gradient matrix G* and the
interaction matrix H (3.5). Then the P matrix is inverted using singular value decomposition; singular
values below a user defined threshold are dropped. The inverse projection matrix P* is then multiplied
by the inverse gradient matrix G* to obtain the modal reconstructor H*[8]. A reconstructor with the
average slopes subtracted is computed as well for use in the LGS and TSLGS modes.

P = G* H (3.5)

H* = P* G* (3.6)

 H *
nas = P*

G − AverageTilts−1 (3.7)

3.3.7.4 Optimal Modal Reconstructor (Deprecated)

The implementation to obtain the modal reconstructor in section TBD, uses the simple least-squares
inverse to obtain the G*. The optimal implementation takes into account the known information on the
statistics of the disturbance signal and the correlated centroid noise (3.8) [9].

Gopt
* = (GT Cn

−1 G + αCNoll
−1)−1 GT Cn

−1 (3.8)

The procedure for obtaining the optimal inverse gradient matrix G* is done in LabVIEW by the VI
rtsoft_opt_G*. The VI handles both optimal and least-squares inverse. The result is then fed to the VI
rtsoft_rec_modal_reconstructor_P_unknown together with the interaction matrix to obtain the modal
reconstructor matrix.

RTSOFT Programmer Manual Rev 3.11, May 2013 38

Chapter 3:The RTSOFT LabVIEW Application

3.3.8 AO Loop Data Recorder

The loop data recorder is implemented in LabVIEW by the VI rtsoft_loop_data_recorder. The VI
implements a state machine with 4 states. Change of state is determined by a binary variable that
represents the command to record and to stop. The initial state is IDLE. The state will be IDLE until the
rec command is given. At that time the transition is done to OPENFILE state to then fall to the WRITE
state. The state will remain at WRITE until the stop command is given. At that time the state will
change to CLOSEFILE state to then fall back to the IDLE state.

Data is written to file in binary format as a sequence of data structure elements of type
_AO_ERROR [4]. The structure contains 7 elements: a time stamp, the x-y tilt error, the x-y slopes,
and the DM voltages.

3.3.9 Reconstruction Error Analysis

Reconstruction error analysis as described in section 3 of document [8], is implemented in
LabVIEW by the VI rtsoft_rec_compute_reconstructor_error. This VI basically computes the statistics
of the residual Zernike amplitudes given by the covariance matrix Ce (3.10). The sum of the diagonal
elements of this matrix is also computed to find the effective compensation Neff (3.11).

An important note here. When analyzing the modal reconstructor with average slopes subtracted, the
G matrix with its average tilt subtracted is used.

E = I − PRG (3.9)

C e = E C z ET (3.10)

N eff = {∑C e, jj

0.2944
 N z

− 3
2 }

− 2
3

 (3.11)

3.3.10 AO Loop Performance

AO loop performance analysis is implemented in LabVIEW by the VI
rtsoft_task_loop_optimization. The VI consumes data produced by the loop-data task (see section
3.3.1). The task collects in local buffers (shift registers in the loop) sequences of slopes and voltages
until 5 blocks of 512 sets are obtained. At that point the slopes and voltages are converted into
sequences of modal coefficients [8] and the averaged power spectrum for each mode is obtained.

The VI implementing the 2T delay between slopes and voltages sequences deserves a bit of
attention. The VI is called rtsoft_opt_delay_2Dsequence and its input array is supposed to contain a
time sequence of vectors. In the RTSOFT this vectors contain Zernike modes. Typically the size will be
2560x55 (5 blocks of 512 loop cycles, 55 Zernike modes). When the VI first run it creates a vector
array of length delay with all its elements equal to the first vector in the input array. The delay is 2T
long for the AO loop. The input vector array is then appended to the vector array just created and the

39 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

last delay elements (last 2 vectors typically) are deleted. That last part is saved in a shift register for the
next time this VI gets called.

3.3.11 Modal Coefficients Charts

The real-time software is capable of presenting the user with the modal coefficients representing
both the uncompensated (open loop modal coefficients) and the compensated atmospheric disturbance
(WFS modal coefficients).

The implementation of the procedure to obtain the modal coefficients is done in LabVIEW by the VI
rtsoft_opt_modal_coef_reconstruction. The slopes are multiplied by the inverse gradient matrix G* and
the voltages are multiplied by the projection matrix P. The open loop modal coefficients are obtained
by adding those two results. A 2T delay is considered in between slopes and voltages to take into
account the AO loop delay (3.12) [8].

aOpenLoop(k) = G* s(k − 2) + Pv(k) (3.12)

The WFS modal coefficients are simply the first term in equation (3.12), that is the result of
multiplying s and G*.

3.3.12 Noise Propagation

The implementation is provided in LabVIEW by the STFLIB module. The VI
stf_modal_noise_covariance_matrix returns the diagonal elements of the modal noise covariance
matrix Ca (3.13), where Cn is the covariance of slope measurements errors.

Ca = G* Cn G
* T (3.13)

If the Cn matrix is not available (e.g. all errors are assumed uncorrelated) then the noise propagation
coefficients returned by the VI are simply the diagonal elements of G*(G*)T.

3.3.13 DM Voltages User Interface

3.3.13.1 ROTFLAT

This command implementation loads and apply the previously recorded flatten DM voltages
including a correction delta to compensate for flexure at different rotator angles. The voltage to apply
to a given electrode is calculated as

V i = A  B×1 − cos ROT   C×sin ROT  (3.14)

where A is the voltage as recorded in the file flattendm.cfg, and B and C are fixed coefficients recorded
in the file Dmflat_rot.txt.

RTSOFT Programmer Manual Rev 3.11, May 2013 40

Chapter 3:The RTSOFT LabVIEW Application

3.3.13.2 Static Aberrations

The implementation is done in the VI dm_Zernike_to_DM_voltages. The procedure consists of
multuplying the projection matrix P by a user defined array of standard Zernike coefficients. The
resulting vector is then added to the current electrodes voltages.

3.3.13.3 Mirror Shape Display

The implementation is done in the VI dm_mirror_shape. The procedure consists of multiplying the
current voltages by their corresponding influence function (pre-loaded at startup) and then adding them
all. The result is then passed to a standard LabVIEW intensity graph for display.

3.3.14 TT Loop User Interface

3.3.14.1 Bias calibration

The implementation is done in the VI TBD. The procedure consists basically in passing to the
RTCORE the average flux over a few seconds for each APD channel as computed by the TT loop
performance task. Is up to the user to ensure the collected values are representative of a bias sample.

The implementation also takes care of storing the values in a text file for persistence so next time the
RTCORE LabviewTM application runs the last bias calibration is correctly applied.

Manipulation of the bias subtraction state and values is done using the tt bias and tt setbias
commands.

3.3.15 TT Loop Performance

TT Loop performance analysis is implemented by the rtsoft_task_tt_performance VI. The VI
consumes data produced by the TT Loop-Data Task (see section 3.3.2 above) once a second and
records the average value for several parameters including flux, loop period and X-Y error. The task
collects in local buffers (shift registers in the loop) sequences of X-Y errors until 5 blocks of 512 are
obtained. At that point the average power spectrum is obtained and plotted.

3.3.16 “Wobble” Tool

An action command was created to support the “wobble” tool to determine the seeing-dependent
coefficient (gain) between dimensionless signals from the guide probes quad sensors and the actual
displacements in arcs-seconds.

The command MODULATE has three input parameters: radius R (in arc-seconds)m temporal
modulation period P (seconds) and the number of modulation cycles NC. The output are three arrays A,
B and C with 8 elements each.

The command is implemented by the parse_command_modulate VI. The VI configures the

41 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

RTCORE to start wobbling the M3 and reads data produced by the TT Loop Data task. The VI then
loops until the specified amount of samples is read and calculates the output arrays.

3.3.17 Mount Control Loop Task

The Mount Control Loop Task is implemented by the rtsoft_task_mount VI. It samples at 1Hz the
output of the mount filter in the RTCORE and sends it in units of arc-seconds to the TCS.

3.3.17.1 X-Y SAM coordinates to Ra-Dec SOAR TCS coordinates

For doing its calculations the RTCORE use Guide Probes x-y coordinates to reference the Mount
commands, independent of the error source selected (2.16).

For sending the Mount command the RTSOFT use SOAR TCS Ra-Dec coordinates. For SAM that
relation is given by (3.15) where PA7 is the instrument position angle reported by the TCS. No negative
feedback here because the TCS will add that on its side.

[ 
 ] = [cos−PA −sin−PA 

sin−PA  cos −PA][ XGP

 Y GP
] (3.15)

3.3.18 LLT Control Loop Task

The LLT Control Loop Task is implemented by the rtsoft_task_LLT.vi VI. It samples at 1Hz the
output of the LLT integrator in the RTCORE and sends it in units of TBD to the LLT control system.

3.3.19 Command Parser Task

The application implements a command parser task to support user commands and macros. The task
is implemented by the parse_task VI. A list of the available commands follow

AO <OPEN | CLOSE | STATE > - Open/Close the AO loop.

BGND <ON | OFF> - WFS background subtraction.

BIAS <ON | OFF | ACQ | APPLY | STATE > - WFS bias subtraction control.

ACQ <frames> - Takes a WFS bias calibration by averaging frames number of frames
and then save the result to disk using two names: the protected name wfsbias.fits and the
date formatted name wfsbias-YYYYMMDDTHHMMSS.fit

APPLY – Loads the file wfsbias.fits from disk and sets the RTCORE to use it.

CAMERA <exposure | ldf | power | readout | reset | set | mancmd | STATE >

exposure [stop|abort]

7 Angle between North and and YGP axis

RTSOFT Programmer Manual Rev 3.11, May 2013 42

Chapter 3:The RTSOFT LabVIEW Application

ldf [util|pci|tim]

power [on|off]

readout[abort|stop-idle]

set binning <val1> <val2>

set exposure <val>

set frames <val>

set gs <val1> <val2>

set readout <val>

set size <val1> <val2>

set trigger <val>

set roi <val1> <val2> <val3> <val4>

set panoramic]

DM <APPLY | FLATTEN | RECFLAT | ROTFLAT | STATE >

FLATTEN – Load and apply the voltages stored in the file flattendm.cfg to the DM.

APPLY <V0 V1 V2 V59> – Apply the given voltages to the DM

RECFLAT – Save the currently applied DM voltages to disk using the protected name
flattendm.cfg and flattendm-YYYYMMDDTHHMMSS.cfg

ROTFLAT – Load and apply the voltages stored in the file flattendm.cfg including a
correction factor based on the current Nasmyth rotator mechanical angle, and
coefficients in file DMflat_rot.txt. See section TBD for a detailed description.

ECHO <ARG1> <ARG2> ... <ARGN> - Return all arguments.

EXEC <MACRO> - execute the specified macro.

FLATTEN – Deprecated, use “DM FLATTEN” instead.

LOAD [APDMAP | WMAT | XGRID | YGRID]

APDBIAS <FILENAME> - Load the bias for each APD.

APDMAP <FILENAME> - Loads the quad sensor geometry

WMAT <FILENAME> - Load the weights for WcoG.

XGRID <FILENAME> - Load x relative positions for WcoG.

YGRID <FILENAME> - Load y relative position for WcoG.

43 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

LLTM1 <CLOSE | OPEN> - LLT M1 loop control.

LLTM3 <CLOSE | DISABLE | ENABLE | OPEN> - LLT M3 loop control.

OFFSET <EL> <AZ> - Add the specified offset to the LLT M3 axis (amplification 10x
from low to high voltage). With not arguments return the currently applied values.

M3 <CLOSE | DISABLE | ENABLE | OPEN> - SOAR M3 loop control.

MODE <TSNGS | NGS | TSLGS | LGS> - Set RTC operation mode.

MODULATE RADIUS PERIOD CYCLES – Wobble the SOAR M3 mirror the specified
RADIUS in arc seconds, at a given PERIOD in seconds, CYCLE number of times to produce
coefficients representing the raw flux, sine modulated flux, and cosine modulated flux for each
APD. With no arguments return the last three sets of coefficients produces: AK,, BK and CK with
K=1..8 (see reference document [11] for details).

MOUNT <CLOSE | OPEN> - SOAR mount loop control.

REC FRAMES AOPERIOD TTPERIOD – Use this command to record FRAMES number of
wavefront sensor frames, AOPERIOD seconds of AO loop data, and TTPERIOD seconds of tip
tilt loop data. With no arguments the default values are used. Set argument to a negative number
to skip recording data for it. The command produce four files:

WF-YYYYMMDDTHHMMSS.RAW
WF-YYYYMMDDTHHMMSS.FITS
AO-YYYYMMDDTHHMMSS.DAT
TT-YYYYMMDDTHHMMSS.DAT

The files are saved to an automatically generated subdirectory located in a root directory set in
the RTSOFT configuration file.

RGATE <ON | OFF | MODE | DELAY | DISTANCE | PWIDTH | PPERIOD>

MODE <AUTO | LASER> - Use to select between AUTO and LASER sync modes for
ON/OFF pulse generation.

DELAY <VALUE> - In LASER mode the delay in [ns] between the falling edge of the
TRIGGER OUT signal and the ON pulse to the Pockels Cell high-voltage driver.

DISTANCE <VALUE> - The delay in [ns] between the falling edge of the ON pulse and
the rising edge of the OFF pulse to the Pockels Cell high voltage driver.

PWIDTH <VALUE> - The width on [ns] for the ON and OFF pulses to the Pockels Cell
high-voltage driver.

PPERIOD <VALUE> - In AUTO mode the time period in [ns] of the pulse-train.

RMFAULT – Clear alarms.

RTSOFT Programmer Manual Rev 3.11, May 2013 44

Chapter 3:The RTSOFT LabVIEW Application

RNOISE <ADU> - Set the readout noise value in the RTCORE. If the max value in a sub-
aperture is smaller than three times this value, then the slopes are discarded and zero is returned
instead.

RT <ARG1> <ARG2> ... <ARGN> - RTCORE interface.

SDSU <ARG1> <ARG2> ... <ARGN> - LEACH II controller interface.

SETREF < REVERT | OFFSET> - Without arguments attempts to measure the reference
positions for each sub aperture.

REVERT - Use the revert option to remove all user applied offsets to the measured
reference positions.

OFFSET < ID | IDN-IDM >

ID <OX> <OY> - Add a user defined offset to sub aperture ID. Without
arguments return the current offset by subtracting the measured reference
position to the current reference position value.

IDN-IDM <OX> <OY> - Add a user defined offset to a range of sub apertures
starting at IDN and ending at IDM.

SLEEP <VALUE> - Wait a number of milliseconds and return.

SYTEM <ARG1> <ARG2> ... <ARGN> - RTC OS command.

TT <PSCALE | PWEIGHT | LOCK>

PSCALE <VALUE> - Set the seeing dependent coefficient that relates TT probes error
signals to actual displacements in arc-seconds.

PWEIGHT <VALUE> <VALUE> - Set the weight for each guide probe error signal.

LOCK <0 | 1> <0 | 1> - Control guide probe locking.

TTBIAS < ON | OFF | WHO | STATE >

<WHO> <SAMPLES> – Use to select the number of counts to average to estimate the
APD bias. Max number is 6000 and min number is 50. Valid values for argument WHO
are 0: BOTH, 1: GP1 only, 2: GP2 only.

TTP1, TTP2 [OPEN | CLOSE] Open/Close the TT loop for probe 1 or 2.

3.3.20 Remote Services

Remote services in the RTSOFT are built on top of the middle-ware provided by the SOAR
Communication Library (SCLN). Documentation on the basics of the SCLN module are available at
the SAM web site archive.

The RTSOFT provides a single server implemented by the VI cx_task_server. Only one remote

45 RTSOFT Programmer Manual Rev 3.11, May 2013

Chapter 3:The RTSOFT LabVIEW Application

connection can be served at a time. The usual client of the RTSOFT will be the ICSOFT [1]. Upon
receiving a command the RTSOFT returns immediately a string response acknowledging the command.
The response starts with one of three possible tokens: DONE, ACTIVE or ERROR, followed by
command specifics arguments.

All local services are available through the remote services interface. All of them are served in “fire
and forget” mode to avoid blocking the remote client. The only exception is the STATUS2 command.

STATUS2 - Returns a cluster containing status information as defined in the configuration file
status.ini. A remote LabVIEW application can borrow that file to decode the cluster and then
access its contents.

3.3.21 Simulator Engine

The Simulator Task is implemented by the rtsoft_task_simulator. When the camera simulator mode
has been selected (command line option -c) the task loops every 10[ms] producing and artificial
pattern, passing this pattern to the RTCORE and triggering the RTCORE control logic to produce a
slope measurement.

The core of the Simulator Task is the simulator engine VI rtsoft_simul_engine. The engine produces
a user defined phase screen, and then adds screen to the DM surface based on the current electrodes
voltages (3.16). The result is then passed through a Shack-Hartman screen simulator to produce an
image.

WFOut = 2∗S DM − WFIn (3.16)

The rtsoft_simul_engine VI works close together with the rtm_rt_service VI when the RTCORE is
not available. When that is the case the rtm_rt_service VI emulates the RTCORE by processing the
artificial pattern produced by the simulator engine and producing slopes and voltages measurements.

RTSOFT Programmer Manual Rev 3.11, May 2013 46

References
[1] Cantarutti R. SDN-8201 Software Overview, February 21, 2006.
[2] Cantarutti R. SDN-8211 Real-Time Computer Software, February 21, 2006.
[3] Cantarutti R. SDN-8210 RTSOFT LabVIEW Application, May 16, 2006.
[4] Cantarutti R. SDN-8212 Real-Time Core Module, February 20, 2006.
[5] Cantarutti R. SDN-8410 RTAI + CentOS 5.8, May 15, 2013.
[6] Cantarutti R. SDN-8401 PowerDAQ Drivers, October 30, 2005.
[7] Tokovinin A. SDN-2306 Characterization of the tilt fiber splitter, March 2, 2006.
[8] Cantarutti R. Rotation Compensation and Gain Factor, December 20, 2005.
[9] Tokovinin A. SDN-1107 Control loop of SAM: modal control, March 8, 2005.
[10] Tokovinin A. SDN-1113 SAM optimization: part II, March 20, 2006.
[11] Tokovinin A. Wobble tool for SAM tip-tilt guiders, December 3, 2010.

47

	Chapter 1: Overview
	1.1 Introduction
	1.2 Software Architecture
	1.3 Source Code
	1.4 Device Drivers
	1.4.1 powerdaq
	1.4.2 pci9054
	1.4.3 ni660x
	1.4.4 astropciv1.7

	Chapter 2: The Real-Time Core
	2.1 Introduction
	2.2 Source Code and Compilation
	2.3 Loading the Module
	2.3.1 Module Parameters

	2.4 Data Flows to User Space
	2.4.1 Control and Response FIFO
	2.4.2 AO Loop Data FIFO
	2.4.3 TT Loop Data FIFO
	2.4.4 CTRL_I Shared Memory Buffer
	2.4.5 CTRL_F Shared Memory Buffer
	2.4.6 RMAT_X and RMAT_Y
	2.4.7 BANK_I Shared Memory Buffer
	2.4.8 DARK_I Shared Memory Buffer
	2.4.9 MASK_I Shared Memory Buffer
	2.4.10 GRID_X and GRID_Y Shared Memory Buffers
	2.4.11 WEIGHT Shared Memory Buffer
	2.4.12 Device File /dev/soartt

	2.5 DM Control Loop
	2.5.1 Centroid Algorithms
	2.5.1.1 Bad Pixels
	2.5.1.2 Bias Subtraction
	2.5.1.3 Background Subtraction
	2.5.1.4 Sub-aperture Flux

	2.5.2 Digital Controller
	2.5.3 Voltage Generation

	2.6 SOAR M3 Control Loop
	2.6.1 Centroid Algorithm
	2.6.1.1 Bias Subtraction

	2.6.2 Digital Controller
	2.6.3 X-Y to M3 Coordinates
	2.6.4 M3 Command Generation (Only for PDAQ DIO Board)
	2.6.5 User Defined Waveforms

	2.7 SOAR Mount Control Loop
	2.7.1 Digital Controller and Low Pass Filter
	2.7.2 X-Y SAM coordinates to X-Y SOAR TCS coordinates

	2.8 LLT M3 Control Loop
	2.8.1 Digital Controller
	2.8.2 X-Y SAM Coordinates to LLT M3 Piezoelectric-Voltages
	2.8.3 LLT M3 Command Generation

	2.9 LLT M1 Control Loop
	2.9.1 Digital Controller and Low Pass Filter

	Chapter 3: The RTSOFT LabVIEW Application
	3.1 Source Code
	3.1.1 FITS
	3.1.2 LV2010-RTAI3.8
	3.1.3 MEMLIB
	3.1.4 NI660X
	3.1.5 SDSU-III
	3.1.6 STFLIB
	3.1.7 TTCOMMSLIB
	3.1.8 UNSCRLIB

	3.2 Architecture
	3.2.1 Consumer Producer Model for Data Acquisition
	3.2.2 Execution Threads

	3.3 Implementation Reference
	3.3.1 AO Loop Data Task
	3.3.2 TT Loop Data Task
	3.3.3 Frame Data Task
	3.3.3.1 Reading a Frame
	3.3.3.2 Quad-Unscrambling

	3.3.4 WFS User Interface
	3.3.4.1 Reference Positions
	3.3.4.2 Adding Static Aberrations to Reference Positions
	3.3.4.3 Display of Zernike Mode Estimates
	3.3.4.4 Bias Calibration
	3.3.4.5 Pockels Cell

	3.3.5 WFS Display
	3.3.6 FWHM & Flux Monitor
	3.3.6.1 Spot Size (FWHM)
	3.3.6.2 Sub-Aperture Flux

	3.3.7 AO Loop Control User Interface
	3.3.7.1 Interaction Matrix
	3.3.7.2 SVD Reconstructor
	3.3.7.3 Modal Reconstructor
	3.3.7.4 Optimal Modal Reconstructor (Deprecated)

	3.3.8 AO Loop Data Recorder
	3.3.9 Reconstruction Error Analysis
	3.3.10 AO Loop Performance
	3.3.11 Modal Coefficients Charts
	3.3.12 Noise Propagation
	3.3.13 DM Voltages User Interface
	3.3.13.1 ROTFLAT
	3.3.13.2 Static Aberrations
	3.3.13.3 Mirror Shape Display

	3.3.14 TT Loop User Interface
	3.3.14.1 Bias calibration

	3.3.15 TT Loop Performance
	3.3.16 “Wobble” Tool
	3.3.17 Mount Control Loop Task
	3.3.17.1 X-Y SAM coordinates to Ra-Dec SOAR TCS coordinates

	3.3.18 LLT Control Loop Task
	3.3.19 Command Parser Task
	3.3.20 Remote Services
	3.3.21 Simulator Engine

