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ABSTRACT

In this article, I describe a new, inexpensive way to make transparent phase screens. I list available technologies
of physical turbulence simulation and describe the transparent phase-plate screens that were produced by the
laquer-spray technique and characterized in the laboratory. The spatial spectrum of phase perturbations is a
reasonable match to the Kolmogorov law with r0 around 0.5 mm at 0.633 µm over spatial frequencies from
0.75 to 5 mm−1. A turbulence simulator using two such rotating screens and destined for the adaptive optics
instrument for the 4.1-m SOAR telescope is described.
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1. INTRODUCTION

While the adaptive optics (AO) community fights daily to correct the distortions introduced by the atmosphere
or by the liquid inside eyes, I concentrated my efforts in making physical turbulence simulators to create those
perturbations. Such physical turbulence simulators are needed for engineering work and optimization of adaptive
optics (AO) instruments. TurSim is the turbulent simulator designed for SAM (SOAR Adaptive Module)7 and
consists of a telescope emulation with transparent turbulent phase screens in its pupil. In this article the results
of the characterizations of such phase screens are given, as well as some details on the optical and mechanical
design of TurSim.

Over the past few decades, the need for phase screens in astronomy increased with the number of AO
systems. Several different technologies using both reflective and refractive methods have been developed. They
have been nicely reviewed by Butler.1 In the reflective category, one finds deformable mirrors (DM), liquid
crystal modulators2, 3 (LC) or rotating mirrors with distorted surfaces.4 DM and LC are also used as correctors
and have given so far satisfactory results. However transmissive phase screens have the advantage of leading to
more compact simulators, especially when more than one layer is considered. The first and natural technique is
to use fluid simulators – with air or water – which are practically complex. Clever ideas such as photosculpture,5

laser writing, near index matching,6 sodium-silver ion exchange,1 have been explored with success.

The drawback of those techniques is either their high cost and/or their complexity. Therefore, I focused
myself on easy ways to make cheap phase screens and discovered that a phase plate of reasonable characteristics
can be fabricated by depositing multiple layers of ordinary hair spray onto a glass substrate.

2. PHASE SCREENS FABRICATION

The fabrication of the phase plates is fast but requires some care. I fabricated the phase screens by spraying
multiple layers of ordinary hair spray onto a glass substrate. I have used disks of glass from Rolyn pyrex ∗ and
Hair Spray from Schwarzkopf with good results though many brands give similar results. This product contains
a component called Amphomer †, which ressembles a resin. The protection of the Amphomer layer is achieved
using another disc put in front of the first one and separated by circular shims. It is sealed under the pressure
of an outside mechanical rings as shown in Figure 7.
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∗glass discs: stock 55.1100 Dia 3”; Thick 1/8” (www.rolyn.com)
†Octylacrilamide/Acrylates/Butylaminoethyl Methacrylate, http://www.personalcarepolymers.com/Site/



3. PHASE SCREEN CHARACTERIZATION

I characterize the phase screens by measuring the value of the r0 with three methods: the modal representation,
the power spectrum representation and the optical transfer function. The turbulence model used is based on
the Kolmogorov law as explained below. In this paper I will show the results for two phase screens called PS1
and PS2. The different studies have been done independently, leading to different values for the pupil diameter
specified each time.

3.1. Qualitative study

The distribution of Optical Path Difference (OPD) created by the phase screens in the exit pupil plane is shown
in Figure 1. The qualitative appearance of it confirms the expectations: the perturbations are displayed in
patterns approximatively circular, characteristic of an image of the pupil seen through a telescope. It is shown
further that the Fried diameter is equal to about 500 µm. Figure 1 represents the OPD obtained with a Shack-
Hartmann wavefront sensor. On this figure, the Fried diameter would correspond to 5 pixels which is consistent
with the observation.

Figure 1. Optical Path Difference
of one of the phase screens in-
troduced in the beam. I used
Wavescope with a 300 µm lenslet ar-
ray. The pupil diameter is 3.4 mm
on the phase screens. The tip/tilt
and focus is removed. The OPD
scale in microns is shown on the
right.

In the focal plane, the behavior of the distortions of the image due to the phase screens looks like the “see-
ing”, as shown in Figure 2. The size of the spot image increases when going from no phase plate to one phase
plate and then two phase plates, while the size of the speckles remains constant. As a first approximation, I can
calculate the Fried diameter from those Point Spread Functions by measuring the size of the spot image which
would be ≈ λ/r0. In the middle image, corresponding to the use of PS2, D/(r0)1 ≈ 12 and on the right image,
corresponding to the use of PS1 and PS2, D/(r0)2 ≈ 27. In this set-up D = 8 mm leading to (r0)1 of about
660 microns and (r0)2 of about 300 microns.

Figure 2. Image of a monochromatic point source with the simulated telescope. These graphs show, from left to right,
the degradation of the image quality when putting 0, 1 and then 2 phase plates in the beam. The aperture is about
8 mm on the phase screen for a r0 ≈ 500 µm. Different intensity scale for different configurations improves the contrast.
λ = 633 nm.



I will show in the following that all three methods demonstrate a reasonable match of our phase screens to
the Kolmogorov law. The average measured value of r0 over 6 disks is 500 ± 100 µm. The uncertainty is due
to the imperfect homogeneity of the phase screens leading to variations of r0 over the disk. Two phase disks,
put one after the other, are used in the final turbulence simulator. If (r0)1 and (r0)2 are the Fried diameters
for each disk, the resulting r0 is computed by:

r0 = [(r0)
−5/3
1 + (r0)

−5/3
2 ]

−3/5
. (1)

For instance, if (r0)1 = (r0)2 = 500 µm, r0 ≈ 330 µm.

3.2. A modal expansion on Zernike basis

In the modal method,10 a wavefront can be decomposed by using a series of orthogonal functions. Here, the
wavefront distortions are expanded in terms of the Zernike basis Zi(r). Thus the phase ϕ(r) can be computed
by:

ϕ(r) =
∑

i

aiZi(r). (2)

Although other decompositions are also used the Zernike expansion is the most common. Knowing the telescope
diameter D and the Fried diameter r0, one gets the rms values of atmospheric Zernike Coefficients < a2

i > using:
√

< a2
i > =

√
Ni ∗ (D/r0)5/6, (3)

where ai are in radians and Ni are the Noll Coefficients.8 Inversely, knowing the Zernike expansion of any
distorted wavefront over a circular aperture of unit radius, one can deduce the Fried parameter r0 from < a2

i >
for each order i. For a Kolmogorov phase screen, the same value of r0 is expected for the different Zernike mode.

The measurements were made with the Wavescope Shack-Hartmann Wavefront sensing system‡ over 20 po-
sitions on the screen and tip/tilt and focus were removed. The lenslet pitch was 300 µm. The graphs of Figure 3
shows the measured r0 as a function of the 40 first coefficients, as well as the mean r0.

Figure 3. Graphs showing the quasi-Kolmogorov behavior of the phase screens using the decomposition over the Zernike
polynomials. The resulting mean value for r0 is about 450 µm for PS1 (left graph) and about 500 µm for PS2 (right
graph).

The behavior is quasi-Kolmogorov expect for the first 4 Zernikes, due to the outer scale. The resulting r0 is
about 450 ± 200 µm for PS1 and about 500 ± 200 µm for PS2.

‡from AOA, Adaptive Optics Associates. http://www.aoainc.com



3.3. Power spectrum calculation

Another way to estimate the Fried parameter is to measure the power spectrum of the phase distortions. Indeed,
the relationship between the phase fluctuations power spectrum W (f) and the Fried diameter r0 is9, 11:

W (f) = 0.0028 ∗ r
−5/3
0 f−11/3, (4)

where f is the spatial frequency. W (f) is related to the OPD δ, by W (f) = α∗ < |FFT (δ)| >2 ∗(λ/2π)2, where
FFT is the Fast Fourier Transform, < |FFT (δ)| >2 is the spectral energy and α is the coefficient converting
the spectral energy in power spectrum. A rapid study shows that α = Ntot ∗ τ2, where Ntot is the total number
of pixels in the image and τ the size of the pixels. Using Equation (4) one obtains the Fried parameter r0 as
a function of f . The resulting curve should be close to a constant. For this experiment, I also used Wavescope
with the 300 µm pitch lenslet.

Figure 4. Graphs showing the quasi Kolmogorov spectrum of the phase screens. The resulting mean value for r0 is
about 400 µm for the left graph and about 460 µm for the right graph.

Figure 4 shows a plot of the r0 versus the spatial frequency, calculated from the power spectrum. The
behavior is quasi-Kolmogorov expect for very low frequencies, due to the outer scale. With this method, I find
r0 about 400 ± 100 µm for PS1 and about 460 ± 100 µm for PS2.

3.4. OTF

The normalized Optical Transfer Function (OTF) of a long exposure image is the Fourier Transform of its Point
Spread Function (PSF) and can be expressed as:

OTF (ν) = exp [−3.44(λν/r0)5/3], (5)

where ν is the spatial frequency in the image plane in radians, λ the wavelength. The normalized OTF is
computed from the PSF and r0 is deduced from Equation (5) using ν1/e, where OTF (ν1/e) = 1/e.

The experiment was made with ST-7XE CCD camera from Sbig § with a pixel size equal to τ = 9 µm. The
phase screens are in a collimated beam brought to a focus by a lens with a focal fp = 100 mm. In order to get
a better sampling, another lens was added in front of the CCD with a magnification of m = 2.79. Thus the
sampling of the PSF is spsf = τ/(mfp) = 3.2 ∗ 10−5 rad. The sampling for the OTF is then sotf = 1/(N ∗ spsf )
rad−1, where N is the size of the image in pixels.

From the OTF (X) plot, where X = λν in µm (Figure 5), one measures the value of X1/e and gets the Fried
diameter r0 using r0 = 3.443/5X1/e. The resulting r0 are gathered in the Table 1 for different configurations.

Using Equation (1), the resulting Fried diameter for the two phase screens is 369 microns, which is in the
error bar of those measurements.

§Santa Barbara Instrument Group, http://www.sbig.com



Figure 5. Optical Transfer Functions obtained when introducing one phase-screen in the beam – left graph – and two
phase-screens – right graphs. The model given by Equation (5) is plotted in dashed line.

3.5. Summary

The three methods give similar results, within their uncertainties, as shown in Table 1.

Table 1. Summary the results for the three methods. r0 is in microns

Method PS1 PS2 PS1 and PS2 PS1 and PS2
measured calculated

Zernike 450 ± 200 500 ± 200 * 312
Power spectrum 400 ± 100 450 ± 100 * 241

OTF 500 ± 100 660 ± 100 385 ± 100 374

In the following I will consider (r0)PS1 = 450 µm for PS1 and (r0)PS2 = 540 µm for PS2, leading to a total
Fried diameter (r0)tot = 320 µm at 0.633 µm. The Fried diameter at 0.5 µm is then 241 µm. We will consider
the particular case of TurSim dedicated to simulate the atmospheric turbulence on Cerro Pachón where SOAR
is located. The results of a site-testing campaign on Pachón12 show that the average seeing is 0.67′′, which
corresponds to r0 = 15 cm at 0.5 µm at zenith. The diameter of the primary mirror of the SOAR telescope
being 4.1 m, I need to simulate the turbulence with D/r0 ≈ 27 at 0.5 µm. being 4.1 m, I need to simulate the
turbulence with D/r0 ≈ 27 at 0.5 µm. Therefore, the pupil diameter on the phase screen for the final instrument
will be 6.6 mm.

4. OTHER CONSIDERATIONS

4.1. Scintillation

One interesting problem encountered in the use of turbulent phase screens is the scintillation. It is unavoidable
since thick substrates are used. The thickness of the plates used in TurSim is 3 mm. The magnification factor
between the disks and the simulated telescope pupil is k = (r0)tel/(r0)PS , where (r0)tel correspond to the
seeing on Cerro Pachón – 150 mm – and (r0)PS is the Fried diameter of the phase screen – 0.24 mm. I find
k = 150/0.3 = 625. Thus, taking 5 mm for the distance between one disk and the aperture, the distance in the
simulated atmosphere will be k2 ∗ 5 mm = 1.95 km. The second layer of turbulence will be at about 13 mm
from the aperture, e.g. 5.08 km for the simulated atmosphere. If the aperture is placed between the phase
plates, the layers will be closer to the aperture, leading to less scintillation. I considered this acceptable, given
that turbulence exists at such location in real life.



4.2. Tip/tilt produced by the phase screens

The tip/tilt has been studied also since TurSim is supposed to be placed after the SOAR mirror M3 which is
the mirror chosen to correct the tip/tilt.7 This tip/tilt introduced by the phase plates has to be quite small to
be either neglected or compensated by the deformable mirror itself.
This study has been done using the Zernike decomposition and Wavescope. The diameter of the pupil used
to calculate the tip/tilt was 5.6 mm. The pupil diameter on the phase screens for the final instrument will be
6.6 mm. Using Equation (3), one can predict the tip/tilt introduced by the phase screens in TurSim < a2

i >tursim

knowing the measured Zernike coefficients < a2
i >meas with: < a2

i >tursim=< a2
i >meas ∗(Dtursim/Dmeas)5/3,

where Dmeas is the pupil diameter used in the measurement and Dtursim the one needed for the final instrument.
In average,

√
< a2

2,3 >meas is about 0.23 rad leading to
√

< a2
2,3 >meas = 0.26 rad for a 6.6 mm aperture diam-

eter. The Kolmogorov model claims that the tip/tilt rms error variance is
√

< a2
2,3 >theo =

√
0.45 ∗ (D/r0)

5/3,
which would be about 5.75 rad for r0 = 500 µm and D = 6.6 mm. The tip/tilt for the phase screen is 4% of the
tip/tilt expected by the Kolmogorov model, thus negligible. This mismatch with the model is consistent with
the previous results where the graphs (Figures 3 and 4) diverged from the theory for low Zernike modes and
low frequencies.

5. IMPLEMENTATION

5.1. Optical design

As explained in Section 3.5, for an average value of r0 of 240µm at 0.5µm for two phase screens, one needs a
pupil diameter on the phase plate equal to about 6.6 mm in order to respect D/r0 ≈ 27 for the SOAR telescope.

Source

Toward

SAM

F/D=16.5

f=100 mmf=100 mm

Diaphragm
6.6 mm

PS2 PS1

L1 L2

Figure 6. Scheme of the optical de-
sign for TurSim. The source will be
changeable.

The extremely simple optical set-up is presented in Figure 6: a first lens collimates the beam coming from
the source and the phase screens are introduced in this parallel beam. Moreover, in order to respect the f ratio
of 16.5 of the SOAR telescope, the lens L2, imaging the pupil on the input of the SOAR AO instrument, has
a focal length equal to about 100 mm. The pupil is defined by the diaphragm, disk with the spider and the
central obstruction. The exit pupil of TurSim is at the same distance from the SOAR focal plane as the exit
pupil of the SOAR telescope.

One can change the simulated seeing from median to good, using one or two phase plates. Worse seeing can
be obtained by increasing the pupil diameter and changing the second imaging lens.
As said in the introduction, I plan to use both monochromatic and polychromatic sources. The monochromatic
source will be either a laser diode or a UV LED directly mounted in the TurSim box. The LED UV will be
used to align and test the wavefront sensor at about 355 nm, the wavelength of the Rayleigh laser guide star.
The polychromatic source would be a white LED with a pinhole.

5.2. Mechanical considerations

From the MASS results13 of seeing measurements on Cerro Pachón, the median time constant is τs = 3.5 ms,
with possible values from 1 to 10 ms. The time constant is defined by τ = 0.31 ∗ r0/vt, where vt is the speed of
the turbulent layers. Thus for a median seeing r0 = 15 cm, the required transversal speed of the phase screens
is vt = 13.3 m.s−1.



This is achieved by driving the disks with two DC Maxon Motors supplied from a voltage regulated source,
to independently change the speed of the two phase screens. The position of the aperture on the phase screens
relative to axis of the motors is 27.5 mm and the magnification between TurSim and the simulated atmosphere
is k ≈ 625 (section 4.1). Therefore, the required rotation period P of the motors is 1/P = (vt/2πr)/k = 7.4
RPM.

The two phase screens are mounted as shown in Figure 7 and the whole system is attached to a rigid small
platform.

[t]

Figure 7. Left Pictures of the prototype installed in the laboratory. Right Global view of the support for the discs.
Each disc is connected to its own DC motor, with variable speed.

Using two motors allows us have more flexibility on the direction and the speed of each disc and therefore get
a better sampling of the turbulence statistic. One can obtain (2πr/r0)2 = 11.8∗104 independent instantaneous
phase-screens. The size of the whole system can be put in a 300x300 mm box.

6. CONCLUSIONS

I discovered an easy way to build phase screens with an approximately Kolmogorov phase statistics. The r0

obtained are about 500 µm and are fairly homogeneous. With the possibility of changing sources and only one
lens, this instrument is a good emulation of the SOAR telescope and a good test for SAM. Moreover I can
simulate different atmospheric conditions corresponding to good, median and bad seeing.
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